3.41.87
Optimal. Leaf size=12
________________________________________________________________________________________
Rubi [A] time = 0.36, antiderivative size = 18, normalized size of antiderivative = 1.50,
number of steps used = 12, number of rules used = 10, integrand size = 33, = 0.303, Rules used
= {1593, 6741, 12, 6688, 6742, 77, 2395, 36, 31, 29}
Antiderivative was successfully verified.
[In]
Int[((6 - x)*Log[4] + (3 - x)*Log[4]*Log[-3 + x])/(-3*x^2 + x^3),x]
[Out]
(2*Log[4])/x + (Log[4]*Log[-3 + x])/x
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 36
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
Rule 77
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 2395
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 15, normalized size = 1.25
Antiderivative was successfully verified.
[In]
Integrate[((6 - x)*Log[4] + (3 - x)*Log[4]*Log[-3 + x])/(-3*x^2 + x^3),x]
[Out]
-((Log[4]*(-2 - Log[-3 + x]))/x)
________________________________________________________________________________________
fricas [A] time = 0.65, size = 17, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*(3-x)*log(2)*log(x-3)+2*(-x+6)*log(2))/(x^3-3*x^2),x, algorithm="fricas")
[Out]
2*(log(2)*log(x - 3) + 2*log(2))/x
________________________________________________________________________________________
giac [A] time = 0.24, size = 19, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*(3-x)*log(2)*log(x-3)+2*(-x+6)*log(2))/(x^3-3*x^2),x, algorithm="giac")
[Out]
2*log(2)*log(x - 3)/x + 4*log(2)/x
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 1.50
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*(3-x)*ln(2)*ln(x-3)+2*(-x+6)*ln(2))/(x^3-3*x^2),x,method=_RETURNVERBOSE)
[Out]
(2*ln(2)*ln(x-3)+4*ln(2))/x
________________________________________________________________________________________
maxima [B] time = 0.51, size = 44, normalized size = 3.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*(3-x)*log(2)*log(x-3)+2*(-x+6)*log(2))/(x^3-3*x^2),x, algorithm="maxima")
[Out]
4/3*(3/x + log(x - 3) - log(x))*log(2) + 4/3*log(2)*log(x) - 2/3*(2*x*log(2) - 3*log(2))*log(x - 3)/x
________________________________________________________________________________________
mupad [B] time = 0.15, size = 54, normalized size = 4.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*log(2)*(x - 6) + 2*log(x - 3)*log(2)*(x - 3))/(3*x^2 - x^3),x)
[Out]
(36*log(2) + 18*log(x - 3)*log(2) - x*(24*log(2) + 12*log(x - 3)*log(2)) + x^2*(4*log(2) + log(x - 3)*log(4)))
/(x*(x - 3)^2)
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*(3-x)*ln(2)*ln(x-3)+2*(-x+6)*ln(2))/(x**3-3*x**2),x)
[Out]
2*log(2)*log(x - 3)/x + 4*log(2)/x
________________________________________________________________________________________