Optimal. Leaf size=27 \[ 2+2 x+\left (e^x-x-\frac {\log (x \log (5+x))}{\log (x)}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 22.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-2 e^x x+2 x^2\right ) \log ^2(x)+\left (\left (e^x (-10-2 x)+10 x+2 x^2\right ) \log ^2(x)+\left (10 x+12 x^2+2 x^3+e^{2 x} \left (10 x+2 x^2\right )+e^x \left (-10 x-12 x^2-2 x^3\right )\right ) \log ^3(x)\right ) \log (5+x)+\left (2 x \log (x)+\left (\left (10-8 x-2 x^2+e^x (10+2 x)\right ) \log (x)+\left (10 x+2 x^2+e^x \left (-10 x-2 x^2\right )\right ) \log ^2(x)\right ) \log (5+x)\right ) \log (x \log (5+x))+(-10-2 x) \log (5+x) \log ^2(x \log (5+x))}{\left (5 x+x^2\right ) \log ^3(x) \log (5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2 e^x x+2 x^2\right ) \log ^2(x)+\left (\left (e^x (-10-2 x)+10 x+2 x^2\right ) \log ^2(x)+\left (10 x+12 x^2+2 x^3+e^{2 x} \left (10 x+2 x^2\right )+e^x \left (-10 x-12 x^2-2 x^3\right )\right ) \log ^3(x)\right ) \log (5+x)+\left (2 x \log (x)+\left (\left (10-8 x-2 x^2+e^x (10+2 x)\right ) \log (x)+\left (10 x+2 x^2+e^x \left (-10 x-2 x^2\right )\right ) \log ^2(x)\right ) \log (5+x)\right ) \log (x \log (5+x))+(-10-2 x) \log (5+x) \log ^2(x \log (5+x))}{x (5+x) \log ^3(x) \log (5+x)} \, dx\\ &=\int \frac {-2 x (5+x) \left (-1-e^{2 x}-x+e^x (1+x)\right ) \log ^3(x) \log (5+x)-2 \log (x) \left (-x-\left (1+e^x-x\right ) (5+x) \log (5+x)\right ) \log (x \log (5+x))-2 (5+x) \log (5+x) \log ^2(x \log (5+x))+2 \log ^2(x) \left (x \left (-e^x+x\right )-(5+x) \log (5+x) \left (e^x-x+\left (-1+e^x\right ) x \log (x \log (5+x))\right )\right )}{x (5+x) \log ^3(x) \log (5+x)} \, dx\\ &=\int \left (2 e^{2 x}-\frac {2 e^x \left (x \log (x)+5 \log (x) \log (5+x)+x \log (x) \log (5+x)+5 x \log ^2(x) \log (5+x)+6 x^2 \log ^2(x) \log (5+x)+x^3 \log ^2(x) \log (5+x)-5 \log (5+x) \log (x \log (5+x))-x \log (5+x) \log (x \log (5+x))+5 x \log (x) \log (5+x) \log (x \log (5+x))+x^2 \log (x) \log (5+x) \log (x \log (5+x))\right )}{x (5+x) \log ^2(x) \log (5+x)}+\frac {2 \left (x^2 \log ^2(x)+5 x \log ^2(x) \log (5+x)+x^2 \log ^2(x) \log (5+x)+5 x \log ^3(x) \log (5+x)+6 x^2 \log ^3(x) \log (5+x)+x^3 \log ^3(x) \log (5+x)+x \log (x) \log (x \log (5+x))+5 \log (x) \log (5+x) \log (x \log (5+x))-4 x \log (x) \log (5+x) \log (x \log (5+x))-x^2 \log (x) \log (5+x) \log (x \log (5+x))+5 x \log ^2(x) \log (5+x) \log (x \log (5+x))+x^2 \log ^2(x) \log (5+x) \log (x \log (5+x))-5 \log (5+x) \log ^2(x \log (5+x))-x \log (5+x) \log ^2(x \log (5+x))\right )}{x (5+x) \log ^3(x) \log (5+x)}\right ) \, dx\\ &=2 \int e^{2 x} \, dx-2 \int \frac {e^x \left (x \log (x)+5 \log (x) \log (5+x)+x \log (x) \log (5+x)+5 x \log ^2(x) \log (5+x)+6 x^2 \log ^2(x) \log (5+x)+x^3 \log ^2(x) \log (5+x)-5 \log (5+x) \log (x \log (5+x))-x \log (5+x) \log (x \log (5+x))+5 x \log (x) \log (5+x) \log (x \log (5+x))+x^2 \log (x) \log (5+x) \log (x \log (5+x))\right )}{x (5+x) \log ^2(x) \log (5+x)} \, dx+2 \int \frac {x^2 \log ^2(x)+5 x \log ^2(x) \log (5+x)+x^2 \log ^2(x) \log (5+x)+5 x \log ^3(x) \log (5+x)+6 x^2 \log ^3(x) \log (5+x)+x^3 \log ^3(x) \log (5+x)+x \log (x) \log (x \log (5+x))+5 \log (x) \log (5+x) \log (x \log (5+x))-4 x \log (x) \log (5+x) \log (x \log (5+x))-x^2 \log (x) \log (5+x) \log (x \log (5+x))+5 x \log ^2(x) \log (5+x) \log (x \log (5+x))+x^2 \log ^2(x) \log (5+x) \log (x \log (5+x))-5 \log (5+x) \log ^2(x \log (5+x))-x \log (5+x) \log ^2(x \log (5+x))}{x (5+x) \log ^3(x) \log (5+x)} \, dx\\ &=e^{2 x}+2 \int \frac {x \left (5+6 x+x^2\right ) \log ^3(x) \log (5+x)+\log (x) \left (x-\left (-5+4 x+x^2\right ) \log (5+x)\right ) \log (x \log (5+x))-(5+x) \log (5+x) \log ^2(x \log (5+x))+x \log ^2(x) (x+(5+x) \log (5+x) (1+\log (x \log (5+x))))}{x (5+x) \log ^3(x) \log (5+x)} \, dx-2 \int \frac {e^x \left (x \left (5+6 x+x^2\right ) \log ^2(x) \log (5+x)-(5+x) \log (5+x) \log (x \log (5+x))+\log (x) (x+(5+x) \log (5+x) (1+x \log (x \log (5+x))))\right )}{x (5+x) \log ^2(x) \log (5+x)} \, dx\\ &=e^{2 x}-2 \int \left (\frac {e^x \left (x+5 \log (5+x)+x \log (5+x)+5 x \log (x) \log (5+x)+6 x^2 \log (x) \log (5+x)+x^3 \log (x) \log (5+x)\right )}{x (5+x) \log (x) \log (5+x)}+\frac {e^x (-1+x \log (x)) \log (x \log (5+x))}{x \log ^2(x)}\right ) \, dx+2 \int \left (\frac {x+5 \log (5+x)+x \log (5+x)+5 \log (x) \log (5+x)+6 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)}{(5+x) \log (x) \log (5+x)}+\frac {\left (x+5 \log (5+x)-4 x \log (5+x)-x^2 \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right ) \log (x \log (5+x))}{x (5+x) \log ^2(x) \log (5+x)}-\frac {\log ^2(x \log (5+x))}{x \log ^3(x)}\right ) \, dx\\ &=e^{2 x}+2 \int \frac {x+5 \log (5+x)+x \log (5+x)+5 \log (x) \log (5+x)+6 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)}{(5+x) \log (x) \log (5+x)} \, dx-2 \int \frac {e^x \left (x+5 \log (5+x)+x \log (5+x)+5 x \log (x) \log (5+x)+6 x^2 \log (x) \log (5+x)+x^3 \log (x) \log (5+x)\right )}{x (5+x) \log (x) \log (5+x)} \, dx-2 \int \frac {e^x (-1+x \log (x)) \log (x \log (5+x))}{x \log ^2(x)} \, dx+2 \int \frac {\left (x+5 \log (5+x)-4 x \log (5+x)-x^2 \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right ) \log (x \log (5+x))}{x (5+x) \log ^2(x) \log (5+x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx\\ &=e^{2 x}+2 \int \left (1+x+\frac {1+\frac {x}{(5+x) \log (5+x)}}{\log (x)}\right ) \, dx-2 \int \frac {e^x (x+(5+x) (1+x (1+x) \log (x)) \log (5+x))}{x (5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {(x+(5+x) (1-x+x \log (x)) \log (5+x)) \log (x \log (5+x))}{x (5+x) \log ^2(x) \log (5+x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx-2 \int \left (-\frac {e^x \log (x \log (5+x))}{x \log ^2(x)}+\frac {e^x \log (x \log (5+x))}{\log (x)}\right ) \, dx\\ &=e^{2 x}+2 x+x^2+2 \int \frac {1+\frac {x}{(5+x) \log (5+x)}}{\log (x)} \, dx-2 \int \left (\frac {e^x \left (1+x \log (x)+x^2 \log (x)\right )}{x \log (x)}+\frac {e^x}{(5+x) \log (x) \log (5+x)}\right ) \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx+2 \int \left (\frac {\left (x+5 \log (5+x)-4 x \log (5+x)-x^2 \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right ) \log (x \log (5+x))}{5 x \log ^2(x) \log (5+x)}-\frac {\left (x+5 \log (5+x)-4 x \log (5+x)-x^2 \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right ) \log (x \log (5+x))}{5 (5+x) \log ^2(x) \log (5+x)}\right ) \, dx\\ &=e^{2 x}+2 x+x^2+\frac {2}{5} \int \frac {\left (x+5 \log (5+x)-4 x \log (5+x)-x^2 \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right ) \log (x \log (5+x))}{x \log ^2(x) \log (5+x)} \, dx-\frac {2}{5} \int \frac {\left (x+5 \log (5+x)-4 x \log (5+x)-x^2 \log (5+x)+5 x \log (x) \log (5+x)+x^2 \log (x) \log (5+x)\right ) \log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)} \, dx-2 \int \frac {e^x \left (1+x \log (x)+x^2 \log (x)\right )}{x \log (x)} \, dx+2 \int \left (\frac {1}{\log (x)}+\frac {x}{(5+x) \log (x) \log (5+x)}\right ) \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx\\ &=e^{2 x}+2 x+x^2+\frac {2}{5} \int \frac {(x+(5+x) (1-x+x \log (x)) \log (5+x)) \log (x \log (5+x))}{x \log ^2(x) \log (5+x)} \, dx-\frac {2}{5} \int \frac {(x+(5+x) (1-x+x \log (x)) \log (5+x)) \log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)} \, dx-2 \int e^x \left (1+x+\frac {1}{x \log (x)}\right ) \, dx+2 \int \frac {1}{\log (x)} \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {x}{(5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx\\ &=e^{2 x}+2 x+x^2+2 \text {li}(x)+\frac {2}{5} \int \left (-\frac {4 \log (x \log (5+x))}{\log ^2(x)}+\frac {5 \log (x \log (5+x))}{x \log ^2(x)}-\frac {x \log (x \log (5+x))}{\log ^2(x)}+\frac {5 \log (x \log (5+x))}{\log (x)}+\frac {x \log (x \log (5+x))}{\log (x)}+\frac {\log (x \log (5+x))}{\log ^2(x) \log (5+x)}\right ) \, dx-\frac {2}{5} \int \left (\frac {5 \log (x \log (5+x))}{(5+x) \log ^2(x)}-\frac {4 x \log (x \log (5+x))}{(5+x) \log ^2(x)}-\frac {x^2 \log (x \log (5+x))}{(5+x) \log ^2(x)}+\frac {5 x \log (x \log (5+x))}{(5+x) \log (x)}+\frac {x^2 \log (x \log (5+x))}{(5+x) \log (x)}+\frac {x \log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)}\right ) \, dx-2 \int \left (e^x+e^x x+\frac {e^x}{x \log (x)}\right ) \, dx+2 \int \left (\frac {1}{\log (x) \log (5+x)}-\frac {5}{(5+x) \log (x) \log (5+x)}\right ) \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx\\ &=e^{2 x}+2 x+x^2+2 \text {li}(x)-\frac {2}{5} \int \frac {x \log (x \log (5+x))}{\log ^2(x)} \, dx+\frac {2}{5} \int \frac {x^2 \log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx+\frac {2}{5} \int \frac {x \log (x \log (5+x))}{\log (x)} \, dx-\frac {2}{5} \int \frac {x^2 \log (x \log (5+x))}{(5+x) \log (x)} \, dx+\frac {2}{5} \int \frac {\log (x \log (5+x))}{\log ^2(x) \log (5+x)} \, dx-\frac {2}{5} \int \frac {x \log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)} \, dx-\frac {8}{5} \int \frac {\log (x \log (5+x))}{\log ^2(x)} \, dx+\frac {8}{5} \int \frac {x \log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-2 \int e^x \, dx-2 \int e^x x \, dx-2 \int \frac {e^x}{x \log (x)} \, dx+2 \int \frac {1}{\log (x) \log (5+x)} \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {\log (x \log (5+x))}{x \log ^2(x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx+2 \int \frac {\log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {x \log (x \log (5+x))}{(5+x) \log (x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx-10 \int \frac {1}{(5+x) \log (x) \log (5+x)} \, dx\\ &=-2 e^x+e^{2 x}+2 x-2 e^x x+x^2+2 \text {li}(x)+2 \log (x \log (5+x)) \text {li}(x)-\frac {2}{5} \int \frac {x \log (x \log (5+x))}{\log ^2(x)} \, dx+\frac {2}{5} \int \frac {x \log (x \log (5+x))}{\log (x)} \, dx+\frac {2}{5} \int \frac {\log (x \log (5+x))}{\log ^2(x) \log (5+x)} \, dx+\frac {2}{5} \int \left (-\frac {5 \log (x \log (5+x))}{\log ^2(x)}+\frac {x \log (x \log (5+x))}{\log ^2(x)}+\frac {25 \log (x \log (5+x))}{(5+x) \log ^2(x)}\right ) \, dx-\frac {2}{5} \int \left (-\frac {5 \log (x \log (5+x))}{\log (x)}+\frac {x \log (x \log (5+x))}{\log (x)}+\frac {25 \log (x \log (5+x))}{(5+x) \log (x)}\right ) \, dx-\frac {2}{5} \int \left (\frac {\log (x \log (5+x))}{\log ^2(x) \log (5+x)}-\frac {5 \log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)}\right ) \, dx-\frac {8}{5} \int \frac {\log (x \log (5+x))}{\log ^2(x)} \, dx+\frac {8}{5} \int \left (\frac {\log (x \log (5+x))}{\log ^2(x)}-\frac {5 \log (x \log (5+x))}{(5+x) \log ^2(x)}\right ) \, dx+2 \int e^x \, dx-2 \int \frac {e^x}{x \log (x)} \, dx+2 \int \frac {1}{\log (x) \log (5+x)} \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx+2 \int \frac {\log (x \log (5+x))}{x \log ^2(x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx-2 \int \left (\frac {\log (x \log (5+x))}{\log (x)}-\frac {5 \log (x \log (5+x))}{(5+x) \log (x)}\right ) \, dx-2 \int \left (\frac {1}{x}+\frac {1}{(5+x) \log (5+x)}\right ) \text {li}(x) \, dx-10 \int \frac {1}{(5+x) \log (x) \log (5+x)} \, dx\\ &=e^{2 x}+2 x-2 e^x x+x^2+2 \text {li}(x)+2 \log (x \log (5+x)) \text {li}(x)-2 \int \frac {e^x}{x \log (x)} \, dx+2 \int \frac {1}{\log (x) \log (5+x)} \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx-2 \int \frac {\log (x \log (5+x))}{\log ^2(x)} \, dx+2 \int \frac {\log (x \log (5+x))}{x \log ^2(x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx+2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx-2 \int \left (\frac {\text {li}(x)}{x}+\frac {\text {li}(x)}{(5+x) \log (5+x)}\right ) \, dx-8 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-10 \int \frac {1}{(5+x) \log (x) \log (5+x)} \, dx+10 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx\\ &=e^{2 x}+2 x-2 e^x x+x^2+2 \text {li}(x)+2 \log (x \log (5+x)) \text {li}(x)-2 \int \frac {e^x}{x \log (x)} \, dx+2 \int \frac {1}{\log (x) \log (5+x)} \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx-2 \int \frac {\log (x \log (5+x))}{\log ^2(x)} \, dx+2 \int \frac {\log (x \log (5+x))}{x \log ^2(x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx+2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx-2 \int \frac {\text {li}(x)}{x} \, dx-2 \int \frac {\text {li}(x)}{(5+x) \log (5+x)} \, dx-8 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-10 \int \frac {1}{(5+x) \log (x) \log (5+x)} \, dx+10 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx\\ &=e^{2 x}+4 x-2 e^x x+x^2+2 \text {li}(x)-2 \log (x) \text {li}(x)+2 \log (x \log (5+x)) \text {li}(x)-2 \int \frac {e^x}{x \log (x)} \, dx+2 \int \frac {1}{\log (x) \log (5+x)} \, dx-2 \int \frac {e^x}{(5+x) \log (x) \log (5+x)} \, dx-2 \int \frac {\log (x \log (5+x))}{\log ^2(x)} \, dx+2 \int \frac {\log (x \log (5+x))}{x \log ^2(x)} \, dx+2 \int \frac {e^x \log (x \log (5+x))}{x \log ^2(x)} \, dx-2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-2 \int \frac {e^x \log (x \log (5+x))}{\log (x)} \, dx+2 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x) \log (5+x)} \, dx-2 \int \frac {\log ^2(x \log (5+x))}{x \log ^3(x)} \, dx-2 \int \frac {\text {li}(x)}{(5+x) \log (5+x)} \, dx-8 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx-10 \int \frac {1}{(5+x) \log (x) \log (5+x)} \, dx+10 \int \frac {\log (x \log (5+x))}{(5+x) \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 52, normalized size = 1.93 \begin {gather*} e^{2 x}+2 x-2 e^x x+x^2-\frac {2 \left (e^x-x\right ) \log (x \log (5+x))}{\log (x)}+\frac {\log ^2(x \log (5+x))}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 53, normalized size = 1.96 \begin {gather*} \frac {2 \, {\left (x - e^{x}\right )} \log \left (x \log \left (x + 5\right )\right ) \log \relax (x) + {\left (x^{2} - 2 \, x e^{x} + 2 \, x + e^{\left (2 \, x\right )}\right )} \log \relax (x)^{2} + \log \left (x \log \left (x + 5\right )\right )^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 84, normalized size = 3.11 \begin {gather*} \frac {x^{2} \log \relax (x)^{2} - 2 \, x e^{x} \log \relax (x)^{2} + 4 \, x \log \relax (x)^{2} + e^{\left (2 \, x\right )} \log \relax (x)^{2} - 2 \, e^{x} \log \relax (x)^{2} + 2 \, x \log \relax (x) \log \left (\log \left (x + 5\right )\right ) - 2 \, e^{x} \log \relax (x) \log \left (\log \left (x + 5\right )\right ) + 2 \, \log \relax (x) \log \left (\log \left (x + 5\right )\right ) + \log \left (\log \left (x + 5\right )\right )^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.21, size = 696, normalized size = 25.78
method | result | size |
risch | \(\frac {\ln \left (\ln \left (5+x \right )\right )^{2}}{\ln \relax (x )^{2}}+\frac {\left (-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2}-i \pi \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{3}+2 x \ln \relax (x )-2 \,{\mathrm e}^{x} \ln \relax (x )+2 \ln \relax (x )\right ) \ln \left (\ln \left (5+x \right )\right )}{\ln \relax (x )^{2}}+\frac {-8 x \,{\mathrm e}^{x} \ln \relax (x )^{2}+4 x^{2} \ln \relax (x )^{2}-8 \,{\mathrm e}^{x} \ln \relax (x )^{2}+16 x \ln \relax (x )^{2}-\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \ln \left (5+x \right )\right )^{2} \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2}+2 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{3}+2 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (5+x \right )\right )^{2} \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{3}-4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{4}-4 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{3}-\pi ^{2} \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{6}+4 \,{\mathrm e}^{2 x} \ln \relax (x )^{2}+4 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2} \ln \relax (x )+4 i \pi x \,\mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2} \ln \relax (x )-4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )-4 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2} {\mathrm e}^{x} \ln \relax (x )-4 i \pi \,\mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2} {\mathrm e}^{x} \ln \relax (x )-\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i \ln \left (5+x \right )\right )^{2} \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{4}+2 \pi ^{2} \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{5}-4 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right ) \ln \relax (x )+4 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right ) {\mathrm e}^{x} \ln \relax (x )+4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i \ln \left (5+x \right )\right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2}-4 i \pi x \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{3} \ln \relax (x )+4 i \pi \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{3} {\mathrm e}^{x} \ln \relax (x )+4 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (5+x \right )\right )^{2}}{4 \ln \relax (x )^{2}}\) | \(696\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 70, normalized size = 2.59 \begin {gather*} -\frac {2 \, {\left (x + 1\right )} e^{x} \log \relax (x)^{2} - {\left (x^{2} + 4 \, x\right )} \log \relax (x)^{2} - e^{\left (2 \, x\right )} \log \relax (x)^{2} - 2 \, {\left ({\left (x + 1\right )} \log \relax (x) - e^{x} \log \relax (x)\right )} \log \left (\log \left (x + 5\right )\right ) - \log \left (\log \left (x + 5\right )\right )^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 49, normalized size = 1.81 \begin {gather*} 2\,x+{\mathrm {e}}^{2\,x}+\frac {{\ln \left (x\,\ln \left (x+5\right )\right )}^2}{{\ln \relax (x)}^2}-2\,x\,{\mathrm {e}}^x+x^2+\frac {2\,\ln \left (x\,\ln \left (x+5\right )\right )\,\left (x-{\mathrm {e}}^x\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.45, size = 70, normalized size = 2.59 \begin {gather*} x^{2} + 2 x + \frac {2 x \log {\left (x \log {\left (x + 5 \right )} \right )}}{\log {\relax (x )}} + \frac {\left (- 2 x \log {\relax (x )} - 2 \log {\left (x \log {\left (x + 5 \right )} \right )}\right ) e^{x} + e^{2 x} \log {\relax (x )}}{\log {\relax (x )}} + \frac {\log {\left (x \log {\left (x + 5 \right )} \right )}^{2}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________