3.41.88
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [F] time = 22.37, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[((-2*E^x*x + 2*x^2)*Log[x]^2 + ((E^x*(-10 - 2*x) + 10*x + 2*x^2)*Log[x]^2 + (10*x + 12*x^2 + 2*x^3 + E^(2*
x)*(10*x + 2*x^2) + E^x*(-10*x - 12*x^2 - 2*x^3))*Log[x]^3)*Log[5 + x] + (2*x*Log[x] + ((10 - 8*x - 2*x^2 + E^
x*(10 + 2*x))*Log[x] + (10*x + 2*x^2 + E^x*(-10*x - 2*x^2))*Log[x]^2)*Log[5 + x])*Log[x*Log[5 + x]] + (-10 - 2
*x)*Log[5 + x]*Log[x*Log[5 + x]]^2)/((5*x + x^2)*Log[x]^3*Log[5 + x]),x]
[Out]
E^(2*x) + 4*x - 2*E^x*x + x^2 + 2*LogIntegral[x] - 2*Log[x]*LogIntegral[x] + 2*Log[x*Log[5 + x]]*LogIntegral[x
] - 2*Defer[Int][E^x/(x*Log[x]), x] + 2*Defer[Int][1/(Log[x]*Log[5 + x]), x] - 10*Defer[Int][1/((5 + x)*Log[x]
*Log[5 + x]), x] - 2*Defer[Int][E^x/((5 + x)*Log[x]*Log[5 + x]), x] - 2*Defer[Int][Log[x*Log[5 + x]]/Log[x]^2,
x] + 2*Defer[Int][Log[x*Log[5 + x]]/(x*Log[x]^2), x] + 2*Defer[Int][(E^x*Log[x*Log[5 + x]])/(x*Log[x]^2), x]
- 2*Defer[Int][(E^x*Log[x*Log[5 + x]])/Log[x], x] + 2*Defer[Int][Log[x*Log[5 + x]]/((5 + x)*Log[x]^2*Log[5 + x
]), x] - 2*Defer[Int][Log[x*Log[5 + x]]^2/(x*Log[x]^3), x] - 2*Defer[Int][LogIntegral[x]/((5 + x)*Log[5 + x]),
x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 52, normalized size = 1.93
Antiderivative was successfully verified.
[In]
Integrate[((-2*E^x*x + 2*x^2)*Log[x]^2 + ((E^x*(-10 - 2*x) + 10*x + 2*x^2)*Log[x]^2 + (10*x + 12*x^2 + 2*x^3 +
E^(2*x)*(10*x + 2*x^2) + E^x*(-10*x - 12*x^2 - 2*x^3))*Log[x]^3)*Log[5 + x] + (2*x*Log[x] + ((10 - 8*x - 2*x^
2 + E^x*(10 + 2*x))*Log[x] + (10*x + 2*x^2 + E^x*(-10*x - 2*x^2))*Log[x]^2)*Log[5 + x])*Log[x*Log[5 + x]] + (-
10 - 2*x)*Log[5 + x]*Log[x*Log[5 + x]]^2)/((5*x + x^2)*Log[x]^3*Log[5 + x]),x]
[Out]
E^(2*x) + 2*x - 2*E^x*x + x^2 - (2*(E^x - x)*Log[x*Log[5 + x]])/Log[x] + Log[x*Log[5 + x]]^2/Log[x]^2
________________________________________________________________________________________
fricas [B] time = 0.56, size = 53, normalized size = 1.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x-10)*log(5+x)*log(x*log(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*log(x)^2+((2*x+10)*exp(x)-
2*x^2-8*x+10)*log(x))*log(5+x)+2*x*log(x))*log(x*log(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)
+2*x^3+12*x^2+10*x)*log(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*log(x)^2)*log(5+x)+(-2*exp(x)*x+2*x^2)*log(x)^2)/(x
^2+5*x)/log(x)^3/log(5+x),x, algorithm="fricas")
[Out]
(2*(x - e^x)*log(x*log(x + 5))*log(x) + (x^2 - 2*x*e^x + 2*x + e^(2*x))*log(x)^2 + log(x*log(x + 5))^2)/log(x)
^2
________________________________________________________________________________________
giac [B] time = 0.25, size = 84, normalized size = 3.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x-10)*log(5+x)*log(x*log(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*log(x)^2+((2*x+10)*exp(x)-
2*x^2-8*x+10)*log(x))*log(5+x)+2*x*log(x))*log(x*log(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)
+2*x^3+12*x^2+10*x)*log(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*log(x)^2)*log(5+x)+(-2*exp(x)*x+2*x^2)*log(x)^2)/(x
^2+5*x)/log(x)^3/log(5+x),x, algorithm="giac")
[Out]
(x^2*log(x)^2 - 2*x*e^x*log(x)^2 + 4*x*log(x)^2 + e^(2*x)*log(x)^2 - 2*e^x*log(x)^2 + 2*x*log(x)*log(log(x + 5
)) - 2*e^x*log(x)*log(log(x + 5)) + 2*log(x)*log(log(x + 5)) + log(log(x + 5))^2)/log(x)^2
________________________________________________________________________________________
maple [C] time = 0.21, size = 696, normalized size = 25.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*x-10)*ln(5+x)*ln(x*ln(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*ln(x)^2+((2*x+10)*exp(x)-2*x^2-8*x+
10)*ln(x))*ln(5+x)+2*x*ln(x))*ln(x*ln(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)+2*x^3+12*x^2+1
0*x)*ln(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*ln(x)^2)*ln(5+x)+(-2*exp(x)*x+2*x^2)*ln(x)^2)/(x^2+5*x)/ln(x)^3/ln(
5+x),x,method=_RETURNVERBOSE)
[Out]
1/ln(x)^2*ln(ln(5+x))^2+(-I*Pi*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))+I*Pi*csgn(I*x)*csgn(I*x*ln(5+x))^2+
I*Pi*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^2-I*Pi*csgn(I*x*ln(5+x))^3+2*x*ln(x)-2*exp(x)*ln(x)+2*ln(x))/ln(x)^2*ln
(ln(5+x))+1/4*(-8*x*exp(x)*ln(x)^2+4*x^2*ln(x)^2-8*exp(x)*ln(x)^2+16*x*ln(x)^2-Pi^2*csgn(I*x)^2*csgn(I*ln(5+x)
)^2*csgn(I*x*ln(5+x))^2+2*Pi^2*csgn(I*x)^2*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^3+2*Pi^2*csgn(I*x)*csgn(I*ln(5+x)
)^2*csgn(I*x*ln(5+x))^3-4*Pi^2*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^4-4*I*ln(x)*Pi*csgn(I*x*ln(5+x))^3+
4*exp(2*x)*ln(x)^2-Pi^2*csgn(I*x*ln(5+x))^6+4*I*Pi*x*csgn(I*x)*csgn(I*x*ln(5+x))^2*ln(x)+4*I*Pi*x*csgn(I*ln(5+
x))*csgn(I*x*ln(5+x))^2*ln(x)-4*I*ln(x)*Pi*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))-4*I*Pi*csgn(I*x)*csgn(I
*x*ln(5+x))^2*exp(x)*ln(x)-4*I*Pi*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^2*exp(x)*ln(x)-Pi^2*csgn(I*x)^2*csgn(I*x*l
n(5+x))^4+2*Pi^2*csgn(I*x)*csgn(I*x*ln(5+x))^5-Pi^2*csgn(I*ln(5+x))^2*csgn(I*x*ln(5+x))^4+2*Pi^2*csgn(I*ln(5+x
))*csgn(I*x*ln(5+x))^5-4*I*Pi*x*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))*ln(x)+4*I*Pi*csgn(I*x)*csgn(I*ln(5
+x))*csgn(I*x*ln(5+x))*exp(x)*ln(x)+4*I*ln(x)*Pi*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^2-4*I*Pi*x*csgn(I*x*ln(5+x)
)^3*ln(x)+4*I*Pi*csgn(I*x*ln(5+x))^3*exp(x)*ln(x)+4*I*ln(x)*Pi*csgn(I*x)*csgn(I*x*ln(5+x))^2)/ln(x)^2
________________________________________________________________________________________
maxima [B] time = 0.44, size = 70, normalized size = 2.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x-10)*log(5+x)*log(x*log(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*log(x)^2+((2*x+10)*exp(x)-
2*x^2-8*x+10)*log(x))*log(5+x)+2*x*log(x))*log(x*log(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)
+2*x^3+12*x^2+10*x)*log(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*log(x)^2)*log(5+x)+(-2*exp(x)*x+2*x^2)*log(x)^2)/(x
^2+5*x)/log(x)^3/log(5+x),x, algorithm="maxima")
[Out]
-(2*(x + 1)*e^x*log(x)^2 - (x^2 + 4*x)*log(x)^2 - e^(2*x)*log(x)^2 - 2*((x + 1)*log(x) - e^x*log(x))*log(log(x
+ 5)) - log(log(x + 5))^2)/log(x)^2
________________________________________________________________________________________
mupad [B] time = 3.67, size = 49, normalized size = 1.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(x + 5)*(log(x)^3*(10*x + exp(2*x)*(10*x + 2*x^2) + 12*x^2 + 2*x^3 - exp(x)*(10*x + 12*x^2 + 2*x^3)) +
log(x)^2*(10*x - exp(x)*(2*x + 10) + 2*x^2)) + log(x*log(x + 5))*(2*x*log(x) - log(x + 5)*(log(x)*(8*x - exp(
x)*(2*x + 10) + 2*x^2 - 10) - log(x)^2*(10*x - exp(x)*(10*x + 2*x^2) + 2*x^2))) - log(x)^2*(2*x*exp(x) - 2*x^2
) - log(x + 5)*log(x*log(x + 5))^2*(2*x + 10))/(log(x + 5)*log(x)^3*(5*x + x^2)),x)
[Out]
2*x + exp(2*x) + log(x*log(x + 5))^2/log(x)^2 - 2*x*exp(x) + x^2 + (2*log(x*log(x + 5))*(x - exp(x)))/log(x)
________________________________________________________________________________________
sympy [B] time = 1.45, size = 70, normalized size = 2.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*x-10)*ln(5+x)*ln(x*ln(5+x))**2+((((-2*x**2-10*x)*exp(x)+2*x**2+10*x)*ln(x)**2+((2*x+10)*exp(x)-
2*x**2-8*x+10)*ln(x))*ln(5+x)+2*x*ln(x))*ln(x*ln(5+x))+(((2*x**2+10*x)*exp(x)**2+(-2*x**3-12*x**2-10*x)*exp(x)
+2*x**3+12*x**2+10*x)*ln(x)**3+((-2*x-10)*exp(x)+2*x**2+10*x)*ln(x)**2)*ln(5+x)+(-2*exp(x)*x+2*x**2)*ln(x)**2)
/(x**2+5*x)/ln(x)**3/ln(5+x),x)
[Out]
x**2 + 2*x + 2*x*log(x*log(x + 5))/log(x) + ((-2*x*log(x) - 2*log(x*log(x + 5)))*exp(x) + exp(2*x)*log(x))/log
(x) + log(x*log(x + 5))**2/log(x)**2
________________________________________________________________________________________