3.41.88 (2exx+2x2)log2(x)+((ex(102x)+10x+2x2)log2(x)+(10x+12x2+2x3+e2x(10x+2x2)+ex(10x12x22x3))log3(x))log(5+x)+(2xlog(x)+((108x2x2+ex(10+2x))log(x)+(10x+2x2+ex(10x2x2))log2(x))log(5+x))log(xlog(5+x))+(102x)log(5+x)log2(xlog(5+x))(5x+x2)log3(x)log(5+x)dx

Optimal. Leaf size=27 2+2x+(exxlog(xlog(5+x))log(x))2

________________________________________________________________________________________

Rubi [F]  time = 22.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (2exx+2x2)log2(x)+((ex(102x)+10x+2x2)log2(x)+(10x+12x2+2x3+e2x(10x+2x2)+ex(10x12x22x3))log3(x))log(5+x)+(2xlog(x)+((108x2x2+ex(10+2x))log(x)+(10x+2x2+ex(10x2x2))log2(x))log(5+x))log(xlog(5+x))+(102x)log(5+x)log2(xlog(5+x))(5x+x2)log3(x)log(5+x)dx

Verification is not applicable to the result.

[In]

Int[((-2*E^x*x + 2*x^2)*Log[x]^2 + ((E^x*(-10 - 2*x) + 10*x + 2*x^2)*Log[x]^2 + (10*x + 12*x^2 + 2*x^3 + E^(2*
x)*(10*x + 2*x^2) + E^x*(-10*x - 12*x^2 - 2*x^3))*Log[x]^3)*Log[5 + x] + (2*x*Log[x] + ((10 - 8*x - 2*x^2 + E^
x*(10 + 2*x))*Log[x] + (10*x + 2*x^2 + E^x*(-10*x - 2*x^2))*Log[x]^2)*Log[5 + x])*Log[x*Log[5 + x]] + (-10 - 2
*x)*Log[5 + x]*Log[x*Log[5 + x]]^2)/((5*x + x^2)*Log[x]^3*Log[5 + x]),x]

[Out]

E^(2*x) + 4*x - 2*E^x*x + x^2 + 2*LogIntegral[x] - 2*Log[x]*LogIntegral[x] + 2*Log[x*Log[5 + x]]*LogIntegral[x
] - 2*Defer[Int][E^x/(x*Log[x]), x] + 2*Defer[Int][1/(Log[x]*Log[5 + x]), x] - 10*Defer[Int][1/((5 + x)*Log[x]
*Log[5 + x]), x] - 2*Defer[Int][E^x/((5 + x)*Log[x]*Log[5 + x]), x] - 2*Defer[Int][Log[x*Log[5 + x]]/Log[x]^2,
 x] + 2*Defer[Int][Log[x*Log[5 + x]]/(x*Log[x]^2), x] + 2*Defer[Int][(E^x*Log[x*Log[5 + x]])/(x*Log[x]^2), x]
- 2*Defer[Int][(E^x*Log[x*Log[5 + x]])/Log[x], x] + 2*Defer[Int][Log[x*Log[5 + x]]/((5 + x)*Log[x]^2*Log[5 + x
]), x] - 2*Defer[Int][Log[x*Log[5 + x]]^2/(x*Log[x]^3), x] - 2*Defer[Int][LogIntegral[x]/((5 + x)*Log[5 + x]),
 x]

Rubi steps

integral=(2exx+2x2)log2(x)+((ex(102x)+10x+2x2)log2(x)+(10x+12x2+2x3+e2x(10x+2x2)+ex(10x12x22x3))log3(x))log(5+x)+(2xlog(x)+((108x2x2+ex(10+2x))log(x)+(10x+2x2+ex(10x2x2))log2(x))log(5+x))log(xlog(5+x))+(102x)log(5+x)log2(xlog(5+x))x(5+x)log3(x)log(5+x)dx=2x(5+x)(1e2xx+ex(1+x))log3(x)log(5+x)2log(x)(x(1+exx)(5+x)log(5+x))log(xlog(5+x))2(5+x)log(5+x)log2(xlog(5+x))+2log2(x)(x(ex+x)(5+x)log(5+x)(exx+(1+ex)xlog(xlog(5+x))))x(5+x)log3(x)log(5+x)dx=(2e2x2ex(xlog(x)+5log(x)log(5+x)+xlog(x)log(5+x)+5xlog2(x)log(5+x)+6x2log2(x)log(5+x)+x3log2(x)log(5+x)5log(5+x)log(xlog(5+x))xlog(5+x)log(xlog(5+x))+5xlog(x)log(5+x)log(xlog(5+x))+x2log(x)log(5+x)log(xlog(5+x)))x(5+x)log2(x)log(5+x)+2(x2log2(x)+5xlog2(x)log(5+x)+x2log2(x)log(5+x)+5xlog3(x)log(5+x)+6x2log3(x)log(5+x)+x3log3(x)log(5+x)+xlog(x)log(xlog(5+x))+5log(x)log(5+x)log(xlog(5+x))4xlog(x)log(5+x)log(xlog(5+x))x2log(x)log(5+x)log(xlog(5+x))+5xlog2(x)log(5+x)log(xlog(5+x))+x2log2(x)log(5+x)log(xlog(5+x))5log(5+x)log2(xlog(5+x))xlog(5+x)log2(xlog(5+x)))x(5+x)log3(x)log(5+x))dx=2e2xdx2ex(xlog(x)+5log(x)log(5+x)+xlog(x)log(5+x)+5xlog2(x)log(5+x)+6x2log2(x)log(5+x)+x3log2(x)log(5+x)5log(5+x)log(xlog(5+x))xlog(5+x)log(xlog(5+x))+5xlog(x)log(5+x)log(xlog(5+x))+x2log(x)log(5+x)log(xlog(5+x)))x(5+x)log2(x)log(5+x)dx+2x2log2(x)+5xlog2(x)log(5+x)+x2log2(x)log(5+x)+5xlog3(x)log(5+x)+6x2log3(x)log(5+x)+x3log3(x)log(5+x)+xlog(x)log(xlog(5+x))+5log(x)log(5+x)log(xlog(5+x))4xlog(x)log(5+x)log(xlog(5+x))x2log(x)log(5+x)log(xlog(5+x))+5xlog2(x)log(5+x)log(xlog(5+x))+x2log2(x)log(5+x)log(xlog(5+x))5log(5+x)log2(xlog(5+x))xlog(5+x)log2(xlog(5+x))x(5+x)log3(x)log(5+x)dx=e2x+2x(5+6x+x2)log3(x)log(5+x)+log(x)(x(5+4x+x2)log(5+x))log(xlog(5+x))(5+x)log(5+x)log2(xlog(5+x))+xlog2(x)(x+(5+x)log(5+x)(1+log(xlog(5+x))))x(5+x)log3(x)log(5+x)dx2ex(x(5+6x+x2)log2(x)log(5+x)(5+x)log(5+x)log(xlog(5+x))+log(x)(x+(5+x)log(5+x)(1+xlog(xlog(5+x)))))x(5+x)log2(x)log(5+x)dx=e2x2(ex(x+5log(5+x)+xlog(5+x)+5xlog(x)log(5+x)+6x2log(x)log(5+x)+x3log(x)log(5+x))x(5+x)log(x)log(5+x)+ex(1+xlog(x))log(xlog(5+x))xlog2(x))dx+2(x+5log(5+x)+xlog(5+x)+5log(x)log(5+x)+6xlog(x)log(5+x)+x2log(x)log(5+x)(5+x)log(x)log(5+x)+(x+5log(5+x)4xlog(5+x)x2log(5+x)+5xlog(x)log(5+x)+x2log(x)log(5+x))log(xlog(5+x))x(5+x)log2(x)log(5+x)log2(xlog(5+x))xlog3(x))dx=e2x+2x+5log(5+x)+xlog(5+x)+5log(x)log(5+x)+6xlog(x)log(5+x)+x2log(x)log(5+x)(5+x)log(x)log(5+x)dx2ex(x+5log(5+x)+xlog(5+x)+5xlog(x)log(5+x)+6x2log(x)log(5+x)+x3log(x)log(5+x))x(5+x)log(x)log(5+x)dx2ex(1+xlog(x))log(xlog(5+x))xlog2(x)dx+2(x+5log(5+x)4xlog(5+x)x2log(5+x)+5xlog(x)log(5+x)+x2log(x)log(5+x))log(xlog(5+x))x(5+x)log2(x)log(5+x)dx2log2(xlog(5+x))xlog3(x)dx=e2x+2(1+x+1+x(5+x)log(5+x)log(x))dx2ex(x+(5+x)(1+x(1+x)log(x))log(5+x))x(5+x)log(x)log(5+x)dx+2(x+(5+x)(1x+xlog(x))log(5+x))log(xlog(5+x))x(5+x)log2(x)log(5+x)dx2log2(xlog(5+x))xlog3(x)dx2(exlog(xlog(5+x))xlog2(x)+exlog(xlog(5+x))log(x))dx=e2x+2x+x2+21+x(5+x)log(5+x)log(x)dx2(ex(1+xlog(x)+x2log(x))xlog(x)+ex(5+x)log(x)log(5+x))dx+2exlog(xlog(5+x))xlog2(x)dx2exlog(xlog(5+x))log(x)dx2log2(xlog(5+x))xlog3(x)dx+2((x+5log(5+x)4xlog(5+x)x2log(5+x)+5xlog(x)log(5+x)+x2log(x)log(5+x))log(xlog(5+x))5xlog2(x)log(5+x)(x+5log(5+x)4xlog(5+x)x2log(5+x)+5xlog(x)log(5+x)+x2log(x)log(5+x))log(xlog(5+x))5(5+x)log2(x)log(5+x))dx=e2x+2x+x2+25(x+5log(5+x)4xlog(5+x)x2log(5+x)+5xlog(x)log(5+x)+x2log(x)log(5+x))log(xlog(5+x))xlog2(x)log(5+x)dx25(x+5log(5+x)4xlog(5+x)x2log(5+x)+5xlog(x)log(5+x)+x2log(x)log(5+x))log(xlog(5+x))(5+x)log2(x)log(5+x)dx2ex(1+xlog(x)+x2log(x))xlog(x)dx+2(1log(x)+x(5+x)log(x)log(5+x))dx2ex(5+x)log(x)log(5+x)dx+2exlog(xlog(5+x))xlog2(x)dx2exlog(xlog(5+x))log(x)dx2log2(xlog(5+x))xlog3(x)dx=e2x+2x+x2+25(x+(5+x)(1x+xlog(x))log(5+x))log(xlog(5+x))xlog2(x)log(5+x)dx25(x+(5+x)(1x+xlog(x))log(5+x))log(xlog(5+x))(5+x)log2(x)log(5+x)dx2ex(1+x+1xlog(x))dx+21log(x)dx2ex(5+x)log(x)log(5+x)dx+2x(5+x)log(x)log(5+x)dx+2exlog(xlog(5+x))xlog2(x)dx2exlog(xlog(5+x))log(x)dx2log2(xlog(5+x))xlog3(x)dx=e2x+2x+x2+2li(x)+25(4log(xlog(5+x))log2(x)+5log(xlog(5+x))xlog2(x)xlog(xlog(5+x))log2(x)+5log(xlog(5+x))log(x)+xlog(xlog(5+x))log(x)+log(xlog(5+x))log2(x)log(5+x))dx25(5log(xlog(5+x))(5+x)log2(x)4xlog(xlog(5+x))(5+x)log2(x)x2log(xlog(5+x))(5+x)log2(x)+5xlog(xlog(5+x))(5+x)log(x)+x2log(xlog(5+x))(5+x)log(x)+xlog(xlog(5+x))(5+x)log2(x)log(5+x))dx2(ex+exx+exxlog(x))dx+2(1log(x)log(5+x)5(5+x)log(x)log(5+x))dx2ex(5+x)log(x)log(5+x)dx+2exlog(xlog(5+x))xlog2(x)dx2exlog(xlog(5+x))log(x)dx2log2(xlog(5+x))xlog3(x)dx=e2x+2x+x2+2li(x)25xlog(xlog(5+x))log2(x)dx+25x2log(xlog(5+x))(5+x)log2(x)dx+25xlog(xlog(5+x))log(x)dx25x2log(xlog(5+x))(5+x)log(x)dx+25log(xlog(5+x))log2(x)log(5+x)dx25xlog(xlog(5+x))(5+x)log2(x)log(5+x)dx85log(xlog(5+x))log2(x)dx+85xlog(xlog(5+x))(5+x)log2(x)dx2exdx2exxdx2exxlog(x)dx+21log(x)log(5+x)dx2ex(5+x)log(x)log(5+x)dx+2log(xlog(5+x))xlog2(x)dx+2exlog(xlog(5+x))xlog2(x)dx2log(xlog(5+x))(5+x)log2(x)dx+2log(xlog(5+x))log(x)dx2exlog(xlog(5+x))log(x)dx2xlog(xlog(5+x))(5+x)log(x)dx2log2(xlog(5+x))xlog3(x)dx101(5+x)log(x)log(5+x)dx=2ex+e2x+2x2exx+x2+2li(x)+2log(xlog(5+x))li(x)25xlog(xlog(5+x))log2(x)dx+25xlog(xlog(5+x))log(x)dx+25log(xlog(5+x))log2(x)log(5+x)dx+25(5log(xlog(5+x))log2(x)+xlog(xlog(5+x))log2(x)+25log(xlog(5+x))(5+x)log2(x))dx25(5log(xlog(5+x))log(x)+xlog(xlog(5+x))log(x)+25log(xlog(5+x))(5+x)log(x))dx25(log(xlog(5+x))log2(x)log(5+x)5log(xlog(5+x))(5+x)log2(x)log(5+x))dx85log(xlog(5+x))log2(x)dx+85(log(xlog(5+x))log2(x)5log(xlog(5+x))(5+x)log2(x))dx+2exdx2exxlog(x)dx+21log(x)log(5+x)dx2ex(5+x)log(x)log(5+x)dx+2log(xlog(5+x))xlog2(x)dx+2exlog(xlog(5+x))xlog2(x)dx2log(xlog(5+x))(5+x)log2(x)dx2exlog(xlog(5+x))log(x)dx2log2(xlog(5+x))xlog3(x)dx2(log(xlog(5+x))log(x)5log(xlog(5+x))(5+x)log(x))dx2(1x+1(5+x)log(5+x))li(x)dx101(5+x)log(x)log(5+x)dx=e2x+2x2exx+x2+2li(x)+2log(xlog(5+x))li(x)2exxlog(x)dx+21log(x)log(5+x)dx2ex(5+x)log(x)log(5+x)dx2log(xlog(5+x))log2(x)dx+2log(xlog(5+x))xlog2(x)dx+2exlog(xlog(5+x))xlog2(x)dx2log(xlog(5+x))(5+x)log2(x)dx2exlog(xlog(5+x))log(x)dx+2log(xlog(5+x))(5+x)log2(x)log(5+x)dx2log2(xlog(5+x))xlog3(x)dx2(li(x)x+li(x)(5+x)log(5+x))dx8log(xlog(5+x))(5+x)log2(x)dx101(5+x)log(x)log(5+x)dx+10log(xlog(5+x))(5+x)log2(x)dx=e2x+2x2exx+x2+2li(x)+2log(xlog(5+x))li(x)2exxlog(x)dx+21log(x)log(5+x)dx2ex(5+x)log(x)log(5+x)dx2log(xlog(5+x))log2(x)dx+2log(xlog(5+x))xlog2(x)dx+2exlog(xlog(5+x))xlog2(x)dx2log(xlog(5+x))(5+x)log2(x)dx2exlog(xlog(5+x))log(x)dx+2log(xlog(5+x))(5+x)log2(x)log(5+x)dx2log2(xlog(5+x))xlog3(x)dx2li(x)xdx2li(x)(5+x)log(5+x)dx8log(xlog(5+x))(5+x)log2(x)dx101(5+x)log(x)log(5+x)dx+10log(xlog(5+x))(5+x)log2(x)dx=e2x+4x2exx+x2+2li(x)2log(x)li(x)+2log(xlog(5+x))li(x)2exxlog(x)dx+21log(x)log(5+x)dx2ex(5+x)log(x)log(5+x)dx2log(xlog(5+x))log2(x)dx+2log(xlog(5+x))xlog2(x)dx+2exlog(xlog(5+x))xlog2(x)dx2log(xlog(5+x))(5+x)log2(x)dx2exlog(xlog(5+x))log(x)dx+2log(xlog(5+x))(5+x)log2(x)log(5+x)dx2log2(xlog(5+x))xlog3(x)dx2li(x)(5+x)log(5+x)dx8log(xlog(5+x))(5+x)log2(x)dx101(5+x)log(x)log(5+x)dx+10log(xlog(5+x))(5+x)log2(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 52, normalized size = 1.93 e2x+2x2exx+x22(exx)log(xlog(5+x))log(x)+log2(xlog(5+x))log2(x)

Antiderivative was successfully verified.

[In]

Integrate[((-2*E^x*x + 2*x^2)*Log[x]^2 + ((E^x*(-10 - 2*x) + 10*x + 2*x^2)*Log[x]^2 + (10*x + 12*x^2 + 2*x^3 +
 E^(2*x)*(10*x + 2*x^2) + E^x*(-10*x - 12*x^2 - 2*x^3))*Log[x]^3)*Log[5 + x] + (2*x*Log[x] + ((10 - 8*x - 2*x^
2 + E^x*(10 + 2*x))*Log[x] + (10*x + 2*x^2 + E^x*(-10*x - 2*x^2))*Log[x]^2)*Log[5 + x])*Log[x*Log[5 + x]] + (-
10 - 2*x)*Log[5 + x]*Log[x*Log[5 + x]]^2)/((5*x + x^2)*Log[x]^3*Log[5 + x]),x]

[Out]

E^(2*x) + 2*x - 2*E^x*x + x^2 - (2*(E^x - x)*Log[x*Log[5 + x]])/Log[x] + Log[x*Log[5 + x]]^2/Log[x]^2

________________________________________________________________________________________

fricas [B]  time = 0.56, size = 53, normalized size = 1.96 2(xex)log(xlog(x+5))log(x)+(x22xex+2x+e(2x))log(x)2+log(xlog(x+5))2log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x-10)*log(5+x)*log(x*log(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*log(x)^2+((2*x+10)*exp(x)-
2*x^2-8*x+10)*log(x))*log(5+x)+2*x*log(x))*log(x*log(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)
+2*x^3+12*x^2+10*x)*log(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*log(x)^2)*log(5+x)+(-2*exp(x)*x+2*x^2)*log(x)^2)/(x
^2+5*x)/log(x)^3/log(5+x),x, algorithm="fricas")

[Out]

(2*(x - e^x)*log(x*log(x + 5))*log(x) + (x^2 - 2*x*e^x + 2*x + e^(2*x))*log(x)^2 + log(x*log(x + 5))^2)/log(x)
^2

________________________________________________________________________________________

giac [B]  time = 0.25, size = 84, normalized size = 3.11 x2log(x)22xexlog(x)2+4xlog(x)2+e(2x)log(x)22exlog(x)2+2xlog(x)log(log(x+5))2exlog(x)log(log(x+5))+2log(x)log(log(x+5))+log(log(x+5))2log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x-10)*log(5+x)*log(x*log(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*log(x)^2+((2*x+10)*exp(x)-
2*x^2-8*x+10)*log(x))*log(5+x)+2*x*log(x))*log(x*log(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)
+2*x^3+12*x^2+10*x)*log(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*log(x)^2)*log(5+x)+(-2*exp(x)*x+2*x^2)*log(x)^2)/(x
^2+5*x)/log(x)^3/log(5+x),x, algorithm="giac")

[Out]

(x^2*log(x)^2 - 2*x*e^x*log(x)^2 + 4*x*log(x)^2 + e^(2*x)*log(x)^2 - 2*e^x*log(x)^2 + 2*x*log(x)*log(log(x + 5
)) - 2*e^x*log(x)*log(log(x + 5)) + 2*log(x)*log(log(x + 5)) + log(log(x + 5))^2)/log(x)^2

________________________________________________________________________________________

maple [C]  time = 0.21, size = 696, normalized size = 25.78




method result size



risch ln(ln(5+x))2ln(x)2+(iπcsgn(ix)csgn(iln(5+x))csgn(ixln(5+x))+iπcsgn(ix)csgn(ixln(5+x))2+iπcsgn(iln(5+x))csgn(ixln(5+x))2iπcsgn(ixln(5+x))3+2xln(x)2exln(x)+2ln(x))ln(ln(5+x))ln(x)2+8xexln(x)2+4x2ln(x)28exln(x)2+16xln(x)2π2csgn(ix)2csgn(iln(5+x))2csgn(ixln(5+x))2+2π2csgn(ix)2csgn(iln(5+x))csgn(ixln(5+x))3+2π2csgn(ix)csgn(iln(5+x))2csgn(ixln(5+x))34π2csgn(ix)csgn(iln(5+x))csgn(ixln(5+x))44iln(x)πcsgn(ixln(5+x))3π2csgn(ixln(5+x))6+4e2xln(x)2+4iπxcsgn(ix)csgn(ixln(5+x))2ln(x)+4iπxcsgn(iln(5+x))csgn(ixln(5+x))2ln(x)4iln(x)πcsgn(ix)csgn(iln(5+x))csgn(ixln(5+x))4iπcsgn(ix)csgn(ixln(5+x))2exln(x)4iπcsgn(iln(5+x))csgn(ixln(5+x))2exln(x)π2csgn(ix)2csgn(ixln(5+x))4+2π2csgn(ix)csgn(ixln(5+x))5π2csgn(iln(5+x))2csgn(ixln(5+x))4+2π2csgn(iln(5+x))csgn(ixln(5+x))54iπxcsgn(ix)csgn(iln(5+x))csgn(ixln(5+x))ln(x)+4iπcsgn(ix)csgn(iln(5+x))csgn(ixln(5+x))exln(x)+4iln(x)πcsgn(iln(5+x))csgn(ixln(5+x))24iπxcsgn(ixln(5+x))3ln(x)+4iπcsgn(ixln(5+x))3exln(x)+4iln(x)πcsgn(ix)csgn(ixln(5+x))24ln(x)2 696



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*x-10)*ln(5+x)*ln(x*ln(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*ln(x)^2+((2*x+10)*exp(x)-2*x^2-8*x+
10)*ln(x))*ln(5+x)+2*x*ln(x))*ln(x*ln(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)+2*x^3+12*x^2+1
0*x)*ln(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*ln(x)^2)*ln(5+x)+(-2*exp(x)*x+2*x^2)*ln(x)^2)/(x^2+5*x)/ln(x)^3/ln(
5+x),x,method=_RETURNVERBOSE)

[Out]

1/ln(x)^2*ln(ln(5+x))^2+(-I*Pi*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))+I*Pi*csgn(I*x)*csgn(I*x*ln(5+x))^2+
I*Pi*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^2-I*Pi*csgn(I*x*ln(5+x))^3+2*x*ln(x)-2*exp(x)*ln(x)+2*ln(x))/ln(x)^2*ln
(ln(5+x))+1/4*(-8*x*exp(x)*ln(x)^2+4*x^2*ln(x)^2-8*exp(x)*ln(x)^2+16*x*ln(x)^2-Pi^2*csgn(I*x)^2*csgn(I*ln(5+x)
)^2*csgn(I*x*ln(5+x))^2+2*Pi^2*csgn(I*x)^2*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^3+2*Pi^2*csgn(I*x)*csgn(I*ln(5+x)
)^2*csgn(I*x*ln(5+x))^3-4*Pi^2*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^4-4*I*ln(x)*Pi*csgn(I*x*ln(5+x))^3+
4*exp(2*x)*ln(x)^2-Pi^2*csgn(I*x*ln(5+x))^6+4*I*Pi*x*csgn(I*x)*csgn(I*x*ln(5+x))^2*ln(x)+4*I*Pi*x*csgn(I*ln(5+
x))*csgn(I*x*ln(5+x))^2*ln(x)-4*I*ln(x)*Pi*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))-4*I*Pi*csgn(I*x)*csgn(I
*x*ln(5+x))^2*exp(x)*ln(x)-4*I*Pi*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^2*exp(x)*ln(x)-Pi^2*csgn(I*x)^2*csgn(I*x*l
n(5+x))^4+2*Pi^2*csgn(I*x)*csgn(I*x*ln(5+x))^5-Pi^2*csgn(I*ln(5+x))^2*csgn(I*x*ln(5+x))^4+2*Pi^2*csgn(I*ln(5+x
))*csgn(I*x*ln(5+x))^5-4*I*Pi*x*csgn(I*x)*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))*ln(x)+4*I*Pi*csgn(I*x)*csgn(I*ln(5
+x))*csgn(I*x*ln(5+x))*exp(x)*ln(x)+4*I*ln(x)*Pi*csgn(I*ln(5+x))*csgn(I*x*ln(5+x))^2-4*I*Pi*x*csgn(I*x*ln(5+x)
)^3*ln(x)+4*I*Pi*csgn(I*x*ln(5+x))^3*exp(x)*ln(x)+4*I*ln(x)*Pi*csgn(I*x)*csgn(I*x*ln(5+x))^2)/ln(x)^2

________________________________________________________________________________________

maxima [B]  time = 0.44, size = 70, normalized size = 2.59 2(x+1)exlog(x)2(x2+4x)log(x)2e(2x)log(x)22((x+1)log(x)exlog(x))log(log(x+5))log(log(x+5))2log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x-10)*log(5+x)*log(x*log(5+x))^2+((((-2*x^2-10*x)*exp(x)+2*x^2+10*x)*log(x)^2+((2*x+10)*exp(x)-
2*x^2-8*x+10)*log(x))*log(5+x)+2*x*log(x))*log(x*log(5+x))+(((2*x^2+10*x)*exp(x)^2+(-2*x^3-12*x^2-10*x)*exp(x)
+2*x^3+12*x^2+10*x)*log(x)^3+((-2*x-10)*exp(x)+2*x^2+10*x)*log(x)^2)*log(5+x)+(-2*exp(x)*x+2*x^2)*log(x)^2)/(x
^2+5*x)/log(x)^3/log(5+x),x, algorithm="maxima")

[Out]

-(2*(x + 1)*e^x*log(x)^2 - (x^2 + 4*x)*log(x)^2 - e^(2*x)*log(x)^2 - 2*((x + 1)*log(x) - e^x*log(x))*log(log(x
 + 5)) - log(log(x + 5))^2)/log(x)^2

________________________________________________________________________________________

mupad [B]  time = 3.67, size = 49, normalized size = 1.81 2x+e2x+ln(xln(x+5))2ln(x)22xex+x2+2ln(xln(x+5))(xex)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x + 5)*(log(x)^3*(10*x + exp(2*x)*(10*x + 2*x^2) + 12*x^2 + 2*x^3 - exp(x)*(10*x + 12*x^2 + 2*x^3)) +
 log(x)^2*(10*x - exp(x)*(2*x + 10) + 2*x^2)) + log(x*log(x + 5))*(2*x*log(x) - log(x + 5)*(log(x)*(8*x - exp(
x)*(2*x + 10) + 2*x^2 - 10) - log(x)^2*(10*x - exp(x)*(10*x + 2*x^2) + 2*x^2))) - log(x)^2*(2*x*exp(x) - 2*x^2
) - log(x + 5)*log(x*log(x + 5))^2*(2*x + 10))/(log(x + 5)*log(x)^3*(5*x + x^2)),x)

[Out]

2*x + exp(2*x) + log(x*log(x + 5))^2/log(x)^2 - 2*x*exp(x) + x^2 + (2*log(x*log(x + 5))*(x - exp(x)))/log(x)

________________________________________________________________________________________

sympy [B]  time = 1.45, size = 70, normalized size = 2.59 x2+2x+2xlog(xlog(x+5))log(x)+(2xlog(x)2log(xlog(x+5)))ex+e2xlog(x)log(x)+log(xlog(x+5))2log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*x-10)*ln(5+x)*ln(x*ln(5+x))**2+((((-2*x**2-10*x)*exp(x)+2*x**2+10*x)*ln(x)**2+((2*x+10)*exp(x)-
2*x**2-8*x+10)*ln(x))*ln(5+x)+2*x*ln(x))*ln(x*ln(5+x))+(((2*x**2+10*x)*exp(x)**2+(-2*x**3-12*x**2-10*x)*exp(x)
+2*x**3+12*x**2+10*x)*ln(x)**3+((-2*x-10)*exp(x)+2*x**2+10*x)*ln(x)**2)*ln(5+x)+(-2*exp(x)*x+2*x**2)*ln(x)**2)
/(x**2+5*x)/ln(x)**3/ln(5+x),x)

[Out]

x**2 + 2*x + 2*x*log(x*log(x + 5))/log(x) + ((-2*x*log(x) - 2*log(x*log(x + 5)))*exp(x) + exp(2*x)*log(x))/log
(x) + log(x*log(x + 5))**2/log(x)**2

________________________________________________________________________________________