Optimal. Leaf size=26 \[ \frac {1}{3} \left (x^2+\log \left (\frac {x^3}{2+x+\log ^2\left (3 x^2\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {6741, 12, 6742, 14, 6684} \begin {gather*} \frac {x^2}{3}-\frac {1}{3} \log \left (\log ^2\left (3 x^2\right )+x+2\right )+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+2 x+4 x^2+2 x^3-4 \log \left (3 x^2\right )+\left (3+2 x^2\right ) \log ^2\left (3 x^2\right )}{3 x \left (2+x+\log ^2\left (3 x^2\right )\right )} \, dx\\ &=\frac {1}{3} \int \frac {6+2 x+4 x^2+2 x^3-4 \log \left (3 x^2\right )+\left (3+2 x^2\right ) \log ^2\left (3 x^2\right )}{x \left (2+x+\log ^2\left (3 x^2\right )\right )} \, dx\\ &=\frac {1}{3} \int \left (\frac {3+2 x^2}{x}+\frac {-x-4 \log \left (3 x^2\right )}{x \left (2+x+\log ^2\left (3 x^2\right )\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {3+2 x^2}{x} \, dx+\frac {1}{3} \int \frac {-x-4 \log \left (3 x^2\right )}{x \left (2+x+\log ^2\left (3 x^2\right )\right )} \, dx\\ &=-\frac {1}{3} \log \left (2+x+\log ^2\left (3 x^2\right )\right )+\frac {1}{3} \int \left (\frac {3}{x}+2 x\right ) \, dx\\ &=\frac {x^2}{3}+\log (x)-\frac {1}{3} \log \left (2+x+\log ^2\left (3 x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{3} \left (x^2+3 \log (x)-\log \left (2+x+\log ^2\left (3 x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 28, normalized size = 1.08 \begin {gather*} \frac {1}{3} \, x^{2} + \frac {1}{2} \, \log \left (3 \, x^{2}\right ) - \frac {1}{3} \, \log \left (\log \left (3 \, x^{2}\right )^{2} + x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 26, normalized size = 1.00 \begin {gather*} \frac {1}{3} \, x^{2} - \frac {1}{3} \, \log \left (-\log \left (3 \, x^{2}\right )^{2} - x - 2\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 0.88
method | result | size |
norman | \(\frac {x^{2}}{3}+\ln \relax (x )-\frac {\ln \left (2+x +\ln \left (3 x^{2}\right )^{2}\right )}{3}\) | \(23\) |
risch | \(\frac {x^{2}}{3}+\ln \relax (x )-\frac {\ln \left (2+x +\ln \left (3 x^{2}\right )^{2}\right )}{3}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 31, normalized size = 1.19 \begin {gather*} \frac {1}{3} \, x^{2} - \frac {1}{3} \, \log \left (\frac {1}{4} \, \log \relax (3)^{2} + \log \relax (3) \log \relax (x) + \log \relax (x)^{2} + \frac {1}{4} \, x + \frac {1}{2}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 26, normalized size = 1.00 \begin {gather*} \frac {\ln \left (x^2\right )}{2}-\frac {\ln \left ({\ln \left (3\,x^2\right )}^2+x+2\right )}{3}+\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 22, normalized size = 0.85 \begin {gather*} \frac {x^{2}}{3} + \log {\relax (x )} - \frac {\log {\left (x + \log {\left (3 x^{2} \right )}^{2} + 2 \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________