3.41.94 6+2x+4x2+2x34log(3x2)+(3+2x2)log2(3x2)6x+3x2+3xlog2(3x2)dx

Optimal. Leaf size=26 13(x2+log(x32+x+log2(3x2)))

________________________________________________________________________________________

Rubi [A]  time = 0.40, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 62, number of rulesintegrand size = 0.081, Rules used = {6741, 12, 6742, 14, 6684} x2313log(log2(3x2)+x+2)+log(x)

Antiderivative was successfully verified.

[In]

Int[(6 + 2*x + 4*x^2 + 2*x^3 - 4*Log[3*x^2] + (3 + 2*x^2)*Log[3*x^2]^2)/(6*x + 3*x^2 + 3*x*Log[3*x^2]^2),x]

[Out]

x^2/3 + Log[x] - Log[2 + x + Log[3*x^2]^2]/3

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=6+2x+4x2+2x34log(3x2)+(3+2x2)log2(3x2)3x(2+x+log2(3x2))dx=136+2x+4x2+2x34log(3x2)+(3+2x2)log2(3x2)x(2+x+log2(3x2))dx=13(3+2x2x+x4log(3x2)x(2+x+log2(3x2)))dx=133+2x2xdx+13x4log(3x2)x(2+x+log2(3x2))dx=13log(2+x+log2(3x2))+13(3x+2x)dx=x23+log(x)13log(2+x+log2(3x2))

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 26, normalized size = 1.00 13(x2+3log(x)log(2+x+log2(3x2)))

Antiderivative was successfully verified.

[In]

Integrate[(6 + 2*x + 4*x^2 + 2*x^3 - 4*Log[3*x^2] + (3 + 2*x^2)*Log[3*x^2]^2)/(6*x + 3*x^2 + 3*x*Log[3*x^2]^2)
,x]

[Out]

(x^2 + 3*Log[x] - Log[2 + x + Log[3*x^2]^2])/3

________________________________________________________________________________________

fricas [A]  time = 1.02, size = 28, normalized size = 1.08 13x2+12log(3x2)13log(log(3x2)2+x+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2+3)*log(3*x^2)^2-4*log(3*x^2)+2*x^3+4*x^2+2*x+6)/(3*x*log(3*x^2)^2+3*x^2+6*x),x, algorithm="f
ricas")

[Out]

1/3*x^2 + 1/2*log(3*x^2) - 1/3*log(log(3*x^2)^2 + x + 2)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 26, normalized size = 1.00 13x213log(log(3x2)2x2)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2+3)*log(3*x^2)^2-4*log(3*x^2)+2*x^3+4*x^2+2*x+6)/(3*x*log(3*x^2)^2+3*x^2+6*x),x, algorithm="g
iac")

[Out]

1/3*x^2 - 1/3*log(-log(3*x^2)^2 - x - 2) + log(x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 23, normalized size = 0.88




method result size



norman x23+ln(x)ln(2+x+ln(3x2)2)3 23
risch x23+ln(x)ln(2+x+ln(3x2)2)3 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^2+3)*ln(3*x^2)^2-4*ln(3*x^2)+2*x^3+4*x^2+2*x+6)/(3*x*ln(3*x^2)^2+3*x^2+6*x),x,method=_RETURNVERBOSE)

[Out]

1/3*x^2+ln(x)-1/3*ln(2+x+ln(3*x^2)^2)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 31, normalized size = 1.19 13x213log(14log(3)2+log(3)log(x)+log(x)2+14x+12)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2+3)*log(3*x^2)^2-4*log(3*x^2)+2*x^3+4*x^2+2*x+6)/(3*x*log(3*x^2)^2+3*x^2+6*x),x, algorithm="m
axima")

[Out]

1/3*x^2 - 1/3*log(1/4*log(3)^2 + log(3)*log(x) + log(x)^2 + 1/4*x + 1/2) + log(x)

________________________________________________________________________________________

mupad [B]  time = 3.15, size = 26, normalized size = 1.00 ln(x2)2ln(ln(3x2)2+x+2)3+x23

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x - 4*log(3*x^2) + 4*x^2 + 2*x^3 + log(3*x^2)^2*(2*x^2 + 3) + 6)/(6*x + 3*x^2 + 3*x*log(3*x^2)^2),x)

[Out]

log(x^2)/2 - log(x + log(3*x^2)^2 + 2)/3 + x^2/3

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 22, normalized size = 0.85 x23+log(x)log(x+log(3x2)2+2)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**2+3)*ln(3*x**2)**2-4*ln(3*x**2)+2*x**3+4*x**2+2*x+6)/(3*x*ln(3*x**2)**2+3*x**2+6*x),x)

[Out]

x**2/3 + log(x) - log(x + log(3*x**2)**2 + 2)/3

________________________________________________________________________________________