3.41.95 (1iπ2x6x2log(1+e5)4xlog(4x+e4x))dx

Optimal. Leaf size=30 x(1iπlog(1+e5)2x(x+log((4+e4)x)))

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 36, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 2, integrand size = 36, number of rulesintegrand size = 0.056, Rules used = {2421, 2304} 2x32x2log((4+e4)x)+x(1iπlog(1+e5))

Antiderivative was successfully verified.

[In]

Int[1 - I*Pi - 2*x - 6*x^2 - Log[1 + E^5] - 4*x*Log[4*x + E^4*x],x]

[Out]

-2*x^3 + x*(1 - I*Pi - Log[1 + E^5]) - 2*x^2*Log[(4 + E^4)*x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2421

Int[((a_.) + Log[(c_.)*(v_)^(n_.)]*(b_.))^(p_.)*(u_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^q*(a + b*Log[c*
ExpandToSum[v, x]^n])^p, x] /; FreeQ[{a, b, c, n, p, q}, x] && BinomialQ[u, x] && LinearQ[v, x] &&  !(Binomial
MatchQ[u, x] && LinearMatchQ[v, x])

Rubi steps

integral=x22x3+x(1iπlog(1+e5))4xlog(4x+e4x)dx=x22x3+x(1iπlog(1+e5))4xlog((4+e4)x)dx=2x3+x(1iπlog(1+e5))2x2log((4+e4)x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 35, normalized size = 1.17 xiπx2x3xlog(1+e5)2x2log((4+e4)x)

Antiderivative was successfully verified.

[In]

Integrate[1 - I*Pi - 2*x - 6*x^2 - Log[1 + E^5] - 4*x*Log[4*x + E^4*x],x]

[Out]

x - I*Pi*x - 2*x^3 - x*Log[1 + E^5] - 2*x^2*Log[(4 + E^4)*x]

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 31, normalized size = 1.03 2x32x2log(xe4+4x)xlog(e51)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x*log(x*exp(2)^2+4*x)-log(-exp(5)-1)-6*x^2-2*x+1,x, algorithm="fricas")

[Out]

-2*x^3 - 2*x^2*log(x*e^4 + 4*x) - x*log(-e^5 - 1) + x

________________________________________________________________________________________

giac [B]  time = 0.13, size = 74, normalized size = 2.47 2x3x22(xe4+4x)2log(xe4+4x)e8+8e4+16xlog(e51)+x+(xe4+4x)2e8+8e4+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x*log(x*exp(2)^2+4*x)-log(-exp(5)-1)-6*x^2-2*x+1,x, algorithm="giac")

[Out]

-2*x^3 - x^2 - 2*(x*e^4 + 4*x)^2*log(x*e^4 + 4*x)/(e^8 + 8*e^4 + 16) - x*log(-e^5 - 1) + x + (x*e^4 + 4*x)^2/(
e^8 + 8*e^4 + 16)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 32, normalized size = 1.07




method result size



risch 2x2ln(xe4+4x)ln(e51)x2x3+x 32
norman (ln(e51)+1)x2x32x2ln(xe4+4x) 36
derivativedivides x(4+e4)2x3(4+e4)2(4+e4)x2ln(x(4+e4))ln(e51)x(4+e4)4+e4 66
default 2x3x2+x2e8ln(x(4+e4))x2(4+e4)216e4ln(x(4+e4))x2(4+e4)232ln(x(4+e4))x2(4+e4)2+e8x2(4+e4)2+8e4x2(4+e4)2+16x2(4+e4)2ln(e51)x 143



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-4*x*ln(x*exp(2)^2+4*x)-ln(-exp(5)-1)-6*x^2-2*x+1,x,method=_RETURNVERBOSE)

[Out]

-2*x^2*ln(x*exp(4)+4*x)-ln(-exp(5)-1)*x-2*x^3+x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 31, normalized size = 1.03 2x32x2log(xe4+4x)xlog(e51)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x*log(x*exp(2)^2+4*x)-log(-exp(5)-1)-6*x^2-2*x+1,x, algorithm="maxima")

[Out]

-2*x^3 - 2*x^2*log(x*e^4 + 4*x) - x*log(-e^5 - 1) + x

________________________________________________________________________________________

mupad [B]  time = 3.08, size = 29, normalized size = 0.97 x(ln(e51)+2xln(4x+xe4)+2x21)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1 - log(- exp(5) - 1) - 4*x*log(4*x + x*exp(4)) - 6*x^2 - 2*x,x)

[Out]

-x*(log(- exp(5) - 1) + 2*x*log(4*x + x*exp(4)) + 2*x^2 - 1)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 37, normalized size = 1.23 2x32x2log(x)2x2log(4+e4)+x(log(1+e5)+1iπ)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-4*x*ln(x*exp(2)**2+4*x)-ln(-exp(5)-1)-6*x**2-2*x+1,x)

[Out]

-2*x**3 - 2*x**2*log(x) - 2*x**2*log(4 + exp(4)) + x*(-log(1 + exp(5)) + 1 - I*pi)

________________________________________________________________________________________