Optimal. Leaf size=30 \[ x \left (1-i \pi -\log \left (1+e^5\right )-2 x \left (x+\log \left (\left (4+e^4\right ) x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 36, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {2421, 2304} \begin {gather*} -2 x^3-2 x^2 \log \left (\left (4+e^4\right ) x\right )+x \left (1-i \pi -\log \left (1+e^5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2304
Rule 2421
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x^2-2 x^3+x \left (1-i \pi -\log \left (1+e^5\right )\right )-4 \int x \log \left (4 x+e^4 x\right ) \, dx\\ &=-x^2-2 x^3+x \left (1-i \pi -\log \left (1+e^5\right )\right )-4 \int x \log \left (\left (4+e^4\right ) x\right ) \, dx\\ &=-2 x^3+x \left (1-i \pi -\log \left (1+e^5\right )\right )-2 x^2 \log \left (\left (4+e^4\right ) x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 35, normalized size = 1.17 \begin {gather*} x-i \pi x-2 x^3-x \log \left (1+e^5\right )-2 x^2 \log \left (\left (4+e^4\right ) x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 31, normalized size = 1.03 \begin {gather*} -2 \, x^{3} - 2 \, x^{2} \log \left (x e^{4} + 4 \, x\right ) - x \log \left (-e^{5} - 1\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 74, normalized size = 2.47 \begin {gather*} -2 \, x^{3} - x^{2} - \frac {2 \, {\left (x e^{4} + 4 \, x\right )}^{2} \log \left (x e^{4} + 4 \, x\right )}{e^{8} + 8 \, e^{4} + 16} - x \log \left (-e^{5} - 1\right ) + x + \frac {{\left (x e^{4} + 4 \, x\right )}^{2}}{e^{8} + 8 \, e^{4} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.07
method | result | size |
risch | \(-2 x^{2} \ln \left (x \,{\mathrm e}^{4}+4 x \right )-\ln \left (-{\mathrm e}^{5}-1\right ) x -2 x^{3}+x\) | \(32\) |
norman | \(\left (-\ln \left (-{\mathrm e}^{5}-1\right )+1\right ) x -2 x^{3}-2 x^{2} \ln \left (x \,{\mathrm e}^{4}+4 x \right )\) | \(36\) |
derivativedivides | \(\frac {x \left (4+{\mathrm e}^{4}\right )-2 x^{3} \left (4+{\mathrm e}^{4}\right )-2 \left (4+{\mathrm e}^{4}\right ) x^{2} \ln \left (x \left (4+{\mathrm e}^{4}\right )\right )-\ln \left (-{\mathrm e}^{5}-1\right ) x \left (4+{\mathrm e}^{4}\right )}{4+{\mathrm e}^{4}}\) | \(66\) |
default | \(-2 x^{3}-x^{2}+x -\frac {2 \,{\mathrm e}^{8} \ln \left (x \left (4+{\mathrm e}^{4}\right )\right ) x^{2}}{\left (4+{\mathrm e}^{4}\right )^{2}}-\frac {16 \,{\mathrm e}^{4} \ln \left (x \left (4+{\mathrm e}^{4}\right )\right ) x^{2}}{\left (4+{\mathrm e}^{4}\right )^{2}}-\frac {32 \ln \left (x \left (4+{\mathrm e}^{4}\right )\right ) x^{2}}{\left (4+{\mathrm e}^{4}\right )^{2}}+\frac {{\mathrm e}^{8} x^{2}}{\left (4+{\mathrm e}^{4}\right )^{2}}+\frac {8 \,{\mathrm e}^{4} x^{2}}{\left (4+{\mathrm e}^{4}\right )^{2}}+\frac {16 x^{2}}{\left (4+{\mathrm e}^{4}\right )^{2}}-\ln \left (-{\mathrm e}^{5}-1\right ) x\) | \(143\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 31, normalized size = 1.03 \begin {gather*} -2 \, x^{3} - 2 \, x^{2} \log \left (x e^{4} + 4 \, x\right ) - x \log \left (-e^{5} - 1\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.08, size = 29, normalized size = 0.97 \begin {gather*} -x\,\left (\ln \left (-{\mathrm {e}}^5-1\right )+2\,x\,\ln \left (4\,x+x\,{\mathrm {e}}^4\right )+2\,x^2-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 37, normalized size = 1.23 \begin {gather*} - 2 x^{3} - 2 x^{2} \log {\relax (x )} - 2 x^{2} \log {\left (4 + e^{4} \right )} + x \left (- \log {\left (1 + e^{5} \right )} + 1 - i \pi \right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________