3.41.97 3+xx(3+3log(x))+(xxx)log(x+xx)(3x+3xx)log(x+xx)dx

Optimal. Leaf size=14 5x3+log(log(x+xx))

________________________________________________________________________________________

Rubi [F]  time = 0.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 3+xx(3+3log(x))+(xxx)log(x+xx)(3x+3xx)log(x+xx)dx

Verification is not applicable to the result.

[In]

Int[(3 + x^x*(3 + 3*Log[x]) + (-x - x^x)*Log[x + x^x])/((3*x + 3*x^x)*Log[x + x^x]),x]

[Out]

-1/3*x + Defer[Int][Log[x + x^x]^(-1), x] + Defer[Int][1/((x + x^x)*Log[x + x^x]), x] - Defer[Int][x/((x + x^x
)*Log[x + x^x]), x] + Defer[Int][Log[x]/Log[x + x^x], x] - Defer[Int][(x*Log[x])/((x + x^x)*Log[x + x^x]), x]

Rubi steps

integral=3+xx(3+3log(x))+(xxx)log(x+xx)3(x+xx)log(x+xx)dx=133+xx(3+3log(x))+(xxx)log(x+xx)(x+xx)log(x+xx)dx=13(3(1+x+xlog(x))(x+xx)log(x+xx)+3+3log(x)log(x+xx)log(x+xx))dx=133+3log(x)log(x+xx)log(x+xx)dx1+x+xlog(x)(x+xx)log(x+xx)dx=13(1+3(1+log(x))log(x+xx))dx(1(x+xx)log(x+xx)+x(x+xx)log(x+xx)+xlog(x)(x+xx)log(x+xx))dx=x3+1(x+xx)log(x+xx)dxx(x+xx)log(x+xx)dxxlog(x)(x+xx)log(x+xx)dx+1+log(x)log(x+xx)dx=x3+(1log(x+xx)+log(x)log(x+xx))dx+1(x+xx)log(x+xx)dxx(x+xx)log(x+xx)dxxlog(x)(x+xx)log(x+xx)dx=x3+1log(x+xx)dx+1(x+xx)log(x+xx)dxx(x+xx)log(x+xx)dx+log(x)log(x+xx)dxxlog(x)(x+xx)log(x+xx)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.18, size = 17, normalized size = 1.21 13(x+3log(log(x+xx)))

Antiderivative was successfully verified.

[In]

Integrate[(3 + x^x*(3 + 3*Log[x]) + (-x - x^x)*Log[x + x^x])/((3*x + 3*x^x)*Log[x + x^x]),x]

[Out]

(-x + 3*Log[Log[x + x^x]])/3

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 11, normalized size = 0.79 13x+log(log(x+xx))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x*log(x))-x)*log(exp(x*log(x))+x)+(3*log(x)+3)*exp(x*log(x))+3)/(3*exp(x*log(x))+3*x)/log(exp
(x*log(x))+x),x, algorithm="fricas")

[Out]

-1/3*x + log(log(x + x^x))

________________________________________________________________________________________

giac [A]  time = 1.74, size = 11, normalized size = 0.79 13x+log(log(x+xx))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x*log(x))-x)*log(exp(x*log(x))+x)+(3*log(x)+3)*exp(x*log(x))+3)/(3*exp(x*log(x))+3*x)/log(exp
(x*log(x))+x),x, algorithm="giac")

[Out]

-1/3*x + log(log(x + x^x))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 12, normalized size = 0.86




method result size



risch x3+ln(ln(xx+x)) 12



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-exp(x*ln(x))-x)*ln(exp(x*ln(x))+x)+(3*ln(x)+3)*exp(x*ln(x))+3)/(3*exp(x*ln(x))+3*x)/ln(exp(x*ln(x))+x),
x,method=_RETURNVERBOSE)

[Out]

-1/3*x+ln(ln(x^x+x))

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 11, normalized size = 0.79 13x+log(log(x+xx))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x*log(x))-x)*log(exp(x*log(x))+x)+(3*log(x)+3)*exp(x*log(x))+3)/(3*exp(x*log(x))+3*x)/log(exp
(x*log(x))+x),x, algorithm="maxima")

[Out]

-1/3*x + log(log(x + x^x))

________________________________________________________________________________________

mupad [B]  time = 3.46, size = 11, normalized size = 0.79 ln(ln(x+xx))x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x*log(x))*(3*log(x) + 3) - log(x + exp(x*log(x)))*(x + exp(x*log(x))) + 3)/(log(x + exp(x*log(x)))*(3
*x + 3*exp(x*log(x)))),x)

[Out]

log(log(x + x^x)) - x/3

________________________________________________________________________________________

sympy [A]  time = 0.76, size = 14, normalized size = 1.00 x3+log(log(x+exlog(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-exp(x*ln(x))-x)*ln(exp(x*ln(x))+x)+(3*ln(x)+3)*exp(x*ln(x))+3)/(3*exp(x*ln(x))+3*x)/ln(exp(x*ln(x
))+x),x)

[Out]

-x/3 + log(log(x + exp(x*log(x))))

________________________________________________________________________________________