3.41.96 1650150x+(968x3+88x4+2x5)log2(3)12100x2+1100x3+25x4dx

Optimal. Leaf size=24 3(22x)x+125x2log2(3)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 5, number of rules used = 4, integrand size = 45, number of rulesintegrand size = 0.089, Rules used = {1594, 27, 12, 1620} 125x2log2(3)322(x+22)+322x

Antiderivative was successfully verified.

[In]

Int[(-1650 - 150*x + (968*x^3 + 88*x^4 + 2*x^5)*Log[3]^2)/(12100*x^2 + 1100*x^3 + 25*x^4),x]

[Out]

3/(22*x) - 3/(22*(22 + x)) + (x^2*Log[3]^2)/25

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 1620

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rubi steps

integral=1650150x+(968x3+88x4+2x5)log2(3)x2(12100+1100x+25x2)dx=1650150x+(968x3+88x4+2x5)log2(3)25x2(22+x)2dx=1251650150x+(968x3+88x4+2x5)log2(3)x2(22+x)2dx=125(7522x2+7522(22+x)2+2xlog2(3))dx=322x322(22+x)+125x2log2(3)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 32, normalized size = 1.33 225(7544x7544(22+x)+12x2log2(3))

Antiderivative was successfully verified.

[In]

Integrate[(-1650 - 150*x + (968*x^3 + 88*x^4 + 2*x^5)*Log[3]^2)/(12100*x^2 + 1100*x^3 + 25*x^4),x]

[Out]

(2*(75/(44*x) - 75/(44*(22 + x)) + (x^2*Log[3]^2)/2))/25

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 27, normalized size = 1.12 (x4+22x3)log(3)2+7525(x2+22x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^5+88*x^4+968*x^3)*log(3)^2-150*x-1650)/(25*x^4+1100*x^3+12100*x^2),x, algorithm="fricas")

[Out]

1/25*((x^4 + 22*x^3)*log(3)^2 + 75)/(x^2 + 22*x)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 21, normalized size = 0.88 125x2log(3)2+3x2+22x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^5+88*x^4+968*x^3)*log(3)^2-150*x-1650)/(25*x^4+1100*x^3+12100*x^2),x, algorithm="giac")

[Out]

1/25*x^2*log(3)^2 + 3/(x^2 + 22*x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 21, normalized size = 0.88




method result size



risch x2ln(3)225+3x(22+x) 21
default x2ln(3)225322(22+x)+322x 23
gosper x4ln(3)2+22x3ln(3)2+7525x(22+x) 30
norman 3+22x3ln(3)225+x4ln(3)225x(22+x) 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^5+88*x^4+968*x^3)*ln(3)^2-150*x-1650)/(25*x^4+1100*x^3+12100*x^2),x,method=_RETURNVERBOSE)

[Out]

1/25*x^2*ln(3)^2+3/x/(22+x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 21, normalized size = 0.88 125x2log(3)2+3x2+22x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^5+88*x^4+968*x^3)*log(3)^2-150*x-1650)/(25*x^4+1100*x^3+12100*x^2),x, algorithm="maxima")

[Out]

1/25*x^2*log(3)^2 + 3/(x^2 + 22*x)

________________________________________________________________________________________

mupad [B]  time = 3.01, size = 20, normalized size = 0.83 x2ln(3)225+3x(x+22)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(150*x - log(3)^2*(968*x^3 + 88*x^4 + 2*x^5) + 1650)/(12100*x^2 + 1100*x^3 + 25*x^4),x)

[Out]

(x^2*log(3)^2)/25 + 3/(x*(x + 22))

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 17, normalized size = 0.71 x2log(3)225+3x2+22x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**5+88*x**4+968*x**3)*ln(3)**2-150*x-1650)/(25*x**4+1100*x**3+12100*x**2),x)

[Out]

x**2*log(3)**2/25 + 3/(x**2 + 22*x)

________________________________________________________________________________________