3.41.99 2e4+e16+32x9x2+4x3x44e4(169x+6x22x3)2e4dx

Optimal. Leaf size=27 e(4x)x(9+4x+x2)4e4+x

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 31, normalized size of antiderivative = 1.15, number of steps used = 3, number of rules used = 2, integrand size = 58, number of rulesintegrand size = 0.034, Rules used = {12, 6706} ex4+4x39x2+32x+164e4+x

Antiderivative was successfully verified.

[In]

Int[(2*E^4 + E^((16 + 32*x - 9*x^2 + 4*x^3 - x^4)/(4*E^4))*(16 - 9*x + 6*x^2 - 2*x^3))/(2*E^4),x]

[Out]

E^((16 + 32*x - 9*x^2 + 4*x^3 - x^4)/(4*E^4)) + x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=(2e4+e16+32x9x2+4x3x44e4(169x+6x22x3))dx2e4=x+e16+32x9x2+4x3x44e4(169x+6x22x3)dx2e4=e16+32x9x2+4x3x44e4+x

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 43, normalized size = 1.59 e4e4+8xe49x24e4+x3e4x44e4+x

Antiderivative was successfully verified.

[In]

Integrate[(2*E^4 + E^((16 + 32*x - 9*x^2 + 4*x^3 - x^4)/(4*E^4))*(16 - 9*x + 6*x^2 - 2*x^3))/(2*E^4),x]

[Out]

E^(4/E^4 + (8*x)/E^4 - (9*x^2)/(4*E^4) + x^3/E^4 - x^4/(4*E^4)) + x

________________________________________________________________________________________

fricas [A]  time = 0.87, size = 25, normalized size = 0.93 x+e(14(x44x3+9x232x16)e(4))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((-2*x^3+6*x^2-9*x+16)*exp(1/4*(-x^4+4*x^3-9*x^2+32*x+16)/exp(4))+2*exp(4))/exp(4),x, algorithm=
"fricas")

[Out]

x + e^(-1/4*(x^4 - 4*x^3 + 9*x^2 - 32*x - 16)*e^(-4))

________________________________________________________________________________________

giac [A]  time = 0.12, size = 40, normalized size = 1.48 (xe4+e(14x4e(4)+x3e(4)94x2e(4)+8xe(4)+4e(4)+4))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((-2*x^3+6*x^2-9*x+16)*exp(1/4*(-x^4+4*x^3-9*x^2+32*x+16)/exp(4))+2*exp(4))/exp(4),x, algorithm=
"giac")

[Out]

(x*e^4 + e^(-1/4*x^4*e^(-4) + x^3*e^(-4) - 9/4*x^2*e^(-4) + 8*x*e^(-4) + 4*e^(-4) + 4))*e^(-4)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 19, normalized size = 0.70




method result size



risch x+e(x4)(x3+9x+4)e44 19
norman x+e(x4+4x39x2+32x+16)e44 30
default e4(2e4e(x4+4x39x2+32x+16)e44+2xe4)2 44



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*((-2*x^3+6*x^2-9*x+16)*exp(1/4*(-x^4+4*x^3-9*x^2+32*x+16)/exp(4))+2*exp(4))/exp(4),x,method=_RETURNVER
BOSE)

[Out]

x+exp(-1/4*(x-4)*(x^3+9*x+4)*exp(-4))

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 40, normalized size = 1.48 (xe4+e(14x4e(4)+x3e(4)94x2e(4)+8xe(4)+4e(4)+4))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((-2*x^3+6*x^2-9*x+16)*exp(1/4*(-x^4+4*x^3-9*x^2+32*x+16)/exp(4))+2*exp(4))/exp(4),x, algorithm=
"maxima")

[Out]

(x*e^4 + e^(-1/4*x^4*e^(-4) + x^3*e^(-4) - 9/4*x^2*e^(-4) + 8*x*e^(-4) + 4*e^(-4) + 4))*e^(-4)

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 33, normalized size = 1.22 x+ee4x44+e4x39e4x24+8e4x+4e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-4)*(exp(4) - (exp(exp(-4)*(8*x - (9*x^2)/4 + x^3 - x^4/4 + 4))*(9*x - 6*x^2 + 2*x^3 - 16))/2),x)

[Out]

x + exp(4*exp(-4) + 8*x*exp(-4) - (9*x^2*exp(-4))/4 + x^3*exp(-4) - (x^4*exp(-4))/4)

________________________________________________________________________________________

sympy [A]  time = 0.17, size = 26, normalized size = 0.96 x+ex44+x39x24+8x+4e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*((-2*x**3+6*x**2-9*x+16)*exp(1/4*(-x**4+4*x**3-9*x**2+32*x+16)/exp(4))+2*exp(4))/exp(4),x)

[Out]

x + exp((-x**4/4 + x**3 - 9*x**2/4 + 8*x + 4)*exp(-4))

________________________________________________________________________________________