Optimal. Leaf size=24 \[ e^{8-\left (-\frac {e^x}{x}+x\right )^2-\log ^2(2)} \]
________________________________________________________________________________________
Rubi [A] time = 0.65, antiderivative size = 37, normalized size of antiderivative = 1.54, number of steps used = 1, number of rules used = 1, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {6706} \begin {gather*} \exp \left (-\frac {x^4-2 e^x x^2-8 x^2+x^2 \log ^2(2)+e^{2 x}}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\exp \left (-\frac {e^{2 x}-8 x^2-2 e^x x^2+x^4+x^2 \log ^2(2)}{x^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 30, normalized size = 1.25 \begin {gather*} e^{8+2 e^x-\frac {e^{2 x}}{x^2}-x^2-\log ^2(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.11, size = 34, normalized size = 1.42 \begin {gather*} e^{\left (-\frac {x^{4} + x^{2} \log \relax (2)^{2} - 2 \, x^{2} e^{x} - 8 \, x^{2} + e^{\left (2 \, x\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 27, normalized size = 1.12 \begin {gather*} e^{\left (-x^{2} - \log \relax (2)^{2} - \frac {e^{\left (2 \, x\right )}}{x^{2}} + 2 \, e^{x} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 39, normalized size = 1.62
method | result | size |
norman | \({\mathrm e}^{\frac {-{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x^{2}-x^{2} \ln \relax (2)^{2}-x^{4}+8 x^{2}}{x^{2}}}\) | \(39\) |
risch | \({\mathrm e}^{\frac {-{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x^{2}-x^{2} \ln \relax (2)^{2}-x^{4}+8 x^{2}}{x^{2}}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 27, normalized size = 1.12 \begin {gather*} e^{\left (-x^{2} - \log \relax (2)^{2} - \frac {e^{\left (2 \, x\right )}}{x^{2}} + 2 \, e^{x} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.15, size = 31, normalized size = 1.29 \begin {gather*} {\mathrm {e}}^8\,{\mathrm {e}}^{-{\ln \relax (2)}^2}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{2\,x}}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 34, normalized size = 1.42 \begin {gather*} e^{\frac {- x^{4} + 2 x^{2} e^{x} - x^{2} \log {\relax (2 )}^{2} + 8 x^{2} - e^{2 x}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________