Optimal. Leaf size=29 \[ \frac {x+5 \left (-3+\frac {4+x}{x \log \left ((-3+x)^2\right )}\right )}{1+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-40 x-90 x^2-20 x^3+\left (60+220 x-50 x^2-10 x^3\right ) \log \left (9-6 x+x^2\right )+\left (-93 x^2+31 x^3\right ) \log ^2\left (9-6 x+x^2\right )}{\left (-3 x^2-11 x^3-8 x^4+4 x^5\right ) \log ^2\left (9-6 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40 x+90 x^2+20 x^3-\left (60+220 x-50 x^2-10 x^3\right ) \log \left (9-6 x+x^2\right )-\left (-93 x^2+31 x^3\right ) \log ^2\left (9-6 x+x^2\right )}{(3-x) x^2 (1+2 x)^2 \log ^2\left (9-6 x+x^2\right )} \, dx\\ &=\int \left (\frac {31}{(1+2 x)^2}-\frac {10 (4+x)}{(-3+x) x (1+2 x) \log ^2\left ((-3+x)^2\right )}-\frac {10 \left (2+8 x+x^2\right )}{x^2 (1+2 x)^2 \log \left ((-3+x)^2\right )}\right ) \, dx\\ &=-\frac {31}{2 (1+2 x)}-10 \int \frac {4+x}{(-3+x) x (1+2 x) \log ^2\left ((-3+x)^2\right )} \, dx-10 \int \frac {2+8 x+x^2}{x^2 (1+2 x)^2 \log \left ((-3+x)^2\right )} \, dx\\ &=-\frac {31}{2 (1+2 x)}-10 \int \left (\frac {1}{3 (-3+x) \log ^2\left ((-3+x)^2\right )}-\frac {4}{3 x \log ^2\left ((-3+x)^2\right )}+\frac {2}{(1+2 x) \log ^2\left ((-3+x)^2\right )}\right ) \, dx-10 \int \left (\frac {2}{x^2 \log \left ((-3+x)^2\right )}-\frac {7}{(1+2 x)^2 \log \left ((-3+x)^2\right )}\right ) \, dx\\ &=-\frac {31}{2 (1+2 x)}-\frac {10}{3} \int \frac {1}{(-3+x) \log ^2\left ((-3+x)^2\right )} \, dx+\frac {40}{3} \int \frac {1}{x \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{(1+2 x) \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{x^2 \log \left ((-3+x)^2\right )} \, dx+70 \int \frac {1}{(1+2 x)^2 \log \left ((-3+x)^2\right )} \, dx\\ &=-\frac {31}{2 (1+2 x)}-\frac {10}{3} \operatorname {Subst}\left (\int \frac {1}{x \log ^2\left (x^2\right )} \, dx,x,-3+x\right )+\frac {40}{3} \int \frac {1}{x \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{(1+2 x) \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{x^2 \log \left ((-3+x)^2\right )} \, dx+70 \int \frac {1}{(1+2 x)^2 \log \left ((-3+x)^2\right )} \, dx\\ &=-\frac {31}{2 (1+2 x)}-\frac {5}{3} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left ((-3+x)^2\right )\right )+\frac {40}{3} \int \frac {1}{x \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{(1+2 x) \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{x^2 \log \left ((-3+x)^2\right )} \, dx+70 \int \frac {1}{(1+2 x)^2 \log \left ((-3+x)^2\right )} \, dx\\ &=-\frac {31}{2 (1+2 x)}+\frac {5}{3 \log \left ((-3+x)^2\right )}+\frac {40}{3} \int \frac {1}{x \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{(1+2 x) \log ^2\left ((-3+x)^2\right )} \, dx-20 \int \frac {1}{x^2 \log \left ((-3+x)^2\right )} \, dx+70 \int \frac {1}{(1+2 x)^2 \log \left ((-3+x)^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 29, normalized size = 1.00 \begin {gather*} \frac {-31+\frac {10 (4+x)}{x \log \left ((-3+x)^2\right )}}{2 (1+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 39, normalized size = 1.34 \begin {gather*} -\frac {31 \, x \log \left (x^{2} - 6 \, x + 9\right ) - 10 \, x - 40}{2 \, {\left (2 \, x^{2} + x\right )} \log \left (x^{2} - 6 \, x + 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 43, normalized size = 1.48 \begin {gather*} \frac {5 \, {\left (x + 4\right )}}{2 \, x^{2} \log \left (x^{2} - 6 \, x + 9\right ) + x \log \left (x^{2} - 6 \, x + 9\right )} - \frac {31}{2 \, {\left (2 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 37, normalized size = 1.28
method | result | size |
risch | \(-\frac {31}{2 \left (2 x +1\right )}+\frac {20+5 x}{x \left (2 x +1\right ) \ln \left (x^{2}-6 x +9\right )}\) | \(37\) |
norman | \(\frac {20-\frac {31 x \ln \left (x^{2}-6 x +9\right )}{2}+5 x}{x \left (2 x +1\right ) \ln \left (x^{2}-6 x +9\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 29, normalized size = 1.00 \begin {gather*} -\frac {31 \, x \log \left (x - 3\right ) - 5 \, x - 20}{2 \, {\left (2 \, x^{2} + x\right )} \log \left (x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 38, normalized size = 1.31 \begin {gather*} \frac {31\,x}{2\,x+1}+\frac {5\,x+20}{x\,\ln \left (x^2-6\,x+9\right )\,\left (2\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 27, normalized size = 0.93 \begin {gather*} \frac {5 x + 20}{\left (2 x^{2} + x\right ) \log {\left (x^{2} - 6 x + 9 \right )}} - \frac {31}{4 x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________