Optimal. Leaf size=31 \[ 5-\frac {4}{-5+e^{e^{18-2 e^x-2 x}-x (-4+\log (3))}+x} \]
________________________________________________________________________________________
Rubi [F] time = 7.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+e^{e^{18-2 e^x-2 x}+4 x-x \log (3)} \left (16+e^{18-2 e^x-2 x} \left (-8-8 e^x\right )-4 \log (3)\right )}{25+e^{2 e^{18-2 e^x-2 x}+8 x-2 x \log (3)}-10 x+x^2+e^{e^{18-2 e^x-2 x}+4 x-x \log (3)} (-10+2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3^{2 x} \left (4+e^{e^{18-2 e^x-2 x}+4 x-x \log (3)} \left (16+e^{18-2 e^x-2 x} \left (-8-8 e^x\right )-4 \log (3)\right )\right )}{\left (5\ 3^x-e^{e^{18-2 e^x-2 x}+4 x}-3^x x\right )^2} \, dx\\ &=\int \left (\frac {4\ 3^{2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2}+\frac {4\ 3^x e^{e^{18-2 e^x-2 x}-2 e^x+2 x} \left (-2 e^{18}-2 e^{18+x}+4 e^{2 e^x+2 x} \left (1-\frac {\log (3)}{4}\right )\right )}{\left (5\ 3^x-e^{e^{18-2 e^x-2 x}+4 x}-3^x x\right )^2}\right ) \, dx\\ &=4 \int \frac {3^{2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx+4 \int \frac {3^x e^{e^{18-2 e^x-2 x}-2 e^x+2 x} \left (-2 e^{18}-2 e^{18+x}+4 e^{2 e^x+2 x} \left (1-\frac {\log (3)}{4}\right )\right )}{\left (5\ 3^x-e^{e^{18-2 e^x-2 x}+4 x}-3^x x\right )^2} \, dx\\ &=4 \int \frac {3^{2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx+4 \int \left (-\frac {2\ 3^x e^{18+e^{18-2 e^x-2 x}-2 e^x+2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2}-\frac {2\ 3^x e^{18+e^{18-2 e^x-2 x}-2 e^x+3 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2}+\frac {3^x \exp \left (e^{18-2 e^x-2 x}-2 e^x+2 x+2 \left (e^x+x\right )\right ) (4-\log (3))}{\left (5\ 3^x-e^{e^{18-2 e^x-2 x}+4 x}-3^x x\right )^2}\right ) \, dx\\ &=4 \int \frac {3^{2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx-8 \int \frac {3^x e^{18+e^{18-2 e^x-2 x}-2 e^x+2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx-8 \int \frac {3^x e^{18+e^{18-2 e^x-2 x}-2 e^x+3 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx+(4 (4-\log (3))) \int \frac {3^x \exp \left (e^{18-2 e^x-2 x}-2 e^x+2 x+2 \left (e^x+x\right )\right )}{\left (5\ 3^x-e^{e^{18-2 e^x-2 x}+4 x}-3^x x\right )^2} \, dx\\ &=4 \int \frac {3^{2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx-8 \int \frac {3^x e^{18+e^{18-2 e^x-2 x}-2 e^x+2 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx-8 \int \frac {3^x e^{18+e^{18-2 e^x-2 x}-2 e^x+3 x}}{\left (-5 3^x+e^{e^{18-2 e^x-2 x}+4 x}+3^x x\right )^2} \, dx+(4 (4-\log (3))) \int \frac {3^x e^{e^{-2 \left (-9+e^x+x\right )}+4 x}}{\left (e^{e^{-2 \left (-9+e^x+x\right )}+4 x}+3^x (-5+x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 31, normalized size = 1.00 \begin {gather*} -\frac {4\ 3^x}{e^{e^{-2 \left (-9+e^x+x\right )}+4 x}+3^x (-5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 27, normalized size = 0.87 \begin {gather*} -\frac {4}{x + e^{\left (-x \log \relax (3) + 4 \, x + e^{\left (-2 \, x - 2 \, e^{x} + 18\right )}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.78, size = 27, normalized size = 0.87 \begin {gather*} -\frac {4}{x + e^{\left (-x \log \relax (3) + 4 \, x + e^{\left (-2 \, x - 2 \, e^{x} + 18\right )}\right )} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 0.87
method | result | size |
risch | \(-\frac {4}{-5+\left (\frac {1}{3}\right )^{x} {\mathrm e}^{{\mathrm e}^{-2 \,{\mathrm e}^{x}+18-2 x}+4 x}+x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 30, normalized size = 0.97 \begin {gather*} -\frac {4 \cdot 3^{x}}{3^{x} {\left (x - 5\right )} + e^{\left (4 \, x + e^{\left (-2 \, x - 2 \, e^{x} + 18\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{4\,x+{\mathrm {e}}^{18-2\,{\mathrm {e}}^x-2\,x}-x\,\ln \relax (3)}\,\left (4\,\ln \relax (3)+{\mathrm {e}}^{18-2\,{\mathrm {e}}^x-2\,x}\,\left (8\,{\mathrm {e}}^x+8\right )-16\right )-4}{{\mathrm {e}}^{8\,x+2\,{\mathrm {e}}^{18-2\,{\mathrm {e}}^x-2\,x}-2\,x\,\ln \relax (3)}-10\,x+{\mathrm {e}}^{4\,x+{\mathrm {e}}^{18-2\,{\mathrm {e}}^x-2\,x}-x\,\ln \relax (3)}\,\left (2\,x-10\right )+x^2+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 27, normalized size = 0.87 \begin {gather*} - \frac {4}{x + e^{- x \log {\relax (3 )} + 4 x + e^{- 2 x - 2 e^{x} + 18}} - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________