Optimal. Leaf size=23 \[ 5 \left (-e^{e^4}+\log \left (-1+\frac {2 e^x}{3}+\frac {1}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15+10 e^x x^2}{3 x-3 x^2+2 e^x x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-3+2 e^x x^2\right )}{3 x-3 x^2+2 e^x x^2} \, dx\\ &=5 \int \frac {-3+2 e^x x^2}{3 x-3 x^2+2 e^x x^2} \, dx\\ &=5 \int \left (1+\frac {3 \left (-1-x+x^2\right )}{x \left (3-3 x+2 e^x x\right )}\right ) \, dx\\ &=5 x+15 \int \frac {-1-x+x^2}{x \left (3-3 x+2 e^x x\right )} \, dx\\ &=5 x+15 \int \left (-\frac {1}{3-3 x+2 e^x x}-\frac {1}{x \left (3-3 x+2 e^x x\right )}+\frac {x}{3-3 x+2 e^x x}\right ) \, dx\\ &=5 x-15 \int \frac {1}{3-3 x+2 e^x x} \, dx-15 \int \frac {1}{x \left (3-3 x+2 e^x x\right )} \, dx+15 \int \frac {x}{3-3 x+2 e^x x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 19, normalized size = 0.83 \begin {gather*} 5 \left (-\log (x)+\log \left (3-3 x+2 e^x x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.74 \begin {gather*} 5 \, \log \left (\frac {2 \, x e^{x} - 3 \, x + 3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 18, normalized size = 0.78 \begin {gather*} 5 \, \log \left (2 \, x e^{x} - 3 \, x + 3\right ) - 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.65
method | result | size |
risch | \(5 \ln \left ({\mathrm e}^{x}-\frac {3 \left (x -1\right )}{2 x}\right )\) | \(15\) |
norman | \(-5 \ln \relax (x )+5 \ln \left (2 \,{\mathrm e}^{x} x -3 x +3\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 18, normalized size = 0.78 \begin {gather*} 5 \, \log \left (\frac {2 \, x e^{x} - 3 \, x + 3}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 18, normalized size = 0.78 \begin {gather*} 5\,\ln \left (2\,x\,{\mathrm {e}}^x-3\,x+3\right )-5\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 14, normalized size = 0.61 \begin {gather*} 5 \log {\left (e^{x} + \frac {3 - 3 x}{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________