Optimal. Leaf size=21 \[ x \log ^2(x) \left (2-e^2+3 \log \left (9 x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 86, normalized size of antiderivative = 4.10, number of steps used = 16, number of rules used = 7, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {2295, 2296, 6688, 12, 2361, 2360, 6742} \begin {gather*} 3 x \log \left (9 x^2\right ) \log ^2(x)+2 \left (8-e^2\right ) x-2 \left (2-e^2\right ) x-12 x+\left (8-e^2\right ) x \log ^2(x)-6 x \log ^2(x)-2 \left (8-e^2\right ) x \log (x)+2 \left (2-e^2\right ) x \log (x)+12 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2296
Rule 2360
Rule 2361
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (2 \left (2-e^2\right )\right ) \int \log (x) \, dx+\left (8-e^2\right ) \int \log ^2(x) \, dx+\int \left (6 \log (x)+3 \log ^2(x)\right ) \log \left (9 x^2\right ) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)+\left (8-e^2\right ) x \log ^2(x)-\left (2 \left (8-e^2\right )\right ) \int \log (x) \, dx+\int 3 \log (x) (2+\log (x)) \log \left (9 x^2\right ) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)+\left (8-e^2\right ) x \log ^2(x)+3 \int \log (x) (2+\log (x)) \log \left (9 x^2\right ) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)+\left (8-e^2\right ) x \log ^2(x)+3 \int \left (2 \log (x) \log \left (9 x^2\right )+\log ^2(x) \log \left (9 x^2\right )\right ) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)+\left (8-e^2\right ) x \log ^2(x)+3 \int \log ^2(x) \log \left (9 x^2\right ) \, dx+6 \int \log (x) \log \left (9 x^2\right ) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)+\left (8-e^2\right ) x \log ^2(x)+3 x \log ^2(x) \log \left (9 x^2\right )-6 \int \left (2-2 \log (x)+\log ^2(x)\right ) \, dx-12 \int (-1+\log (x)) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)+\left (8-e^2\right ) x \log ^2(x)+3 x \log ^2(x) \log \left (9 x^2\right )-6 \int \log ^2(x) \, dx\\ &=-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)-6 x \log ^2(x)+\left (8-e^2\right ) x \log ^2(x)+3 x \log ^2(x) \log \left (9 x^2\right )+12 \int \log (x) \, dx\\ &=-12 x-2 \left (2-e^2\right ) x+2 \left (8-e^2\right ) x+12 x \log (x)+2 \left (2-e^2\right ) x \log (x)-2 \left (8-e^2\right ) x \log (x)-6 x \log ^2(x)+\left (8-e^2\right ) x \log ^2(x)+3 x \log ^2(x) \log \left (9 x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 1.00 \begin {gather*} x \log ^2(x) \left (2-e^2+3 \log \left (9 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 27, normalized size = 1.29 \begin {gather*} 6 \, x \log \relax (x)^{3} - {\left (x e^{2} - 6 \, x \log \relax (3) - 2 \, x\right )} \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 62, normalized size = 2.95 \begin {gather*} 6 \, x {\left (\log \relax (3) - 1\right )} \log \relax (x)^{2} + 6 \, x \log \relax (x)^{3} - 2 \, {\left (x \log \relax (x) - x\right )} {\left (e^{2} - 2\right )} - {\left (x \log \relax (x)^{2} - 2 \, x \log \relax (x) + 2 \, x\right )} {\left (e^{2} - 8\right )} + 12 \, x \log \relax (x) - 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.29
method | result | size |
norman | \(\left (2-{\mathrm e}^{2}\right ) x \ln \relax (x )^{2}+3 x \ln \relax (x )^{2} \ln \left (9 x^{2}\right )\) | \(27\) |
default | \(-x \,{\mathrm e}^{2} \ln \relax (x )^{2}+2 x \ln \relax (x )^{2}+3 \ln \relax (x )^{2} \ln \left (x^{2}\right ) x +6 x \ln \relax (3) \ln \relax (x )^{2}\) | \(38\) |
risch | \(6 x \ln \relax (x )^{3}-\frac {3 i \pi \ln \relax (x )^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) x}{2}+3 i \pi \ln \relax (x )^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} x -\frac {3 i \pi \ln \relax (x )^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} x}{2}+6 x \ln \relax (3) \ln \relax (x )^{2}+2 x \ln \relax (x )^{2}-x \,{\mathrm e}^{2} \ln \relax (x )^{2}\) | \(98\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 76, normalized size = 3.62 \begin {gather*} -{\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x {\left (e^{2} - 8\right )} - 6 \, x \log \relax (x)^{2} - 2 \, {\left (x \log \relax (x) - x\right )} {\left (e^{2} - 2\right )} + 3 \, {\left ({\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x + 2 \, x \log \relax (x) - 2 \, x\right )} \log \left (9 \, x^{2}\right ) + 12 \, x \log \relax (x) - 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.92, size = 20, normalized size = 0.95 \begin {gather*} x\,{\ln \relax (x)}^2\,\left (3\,\ln \left (9\,x^2\right )-{\mathrm {e}}^2+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 27, normalized size = 1.29 \begin {gather*} 6 x \log {\relax (x )}^{3} + \left (- x e^{2} + 2 x + 6 x \log {\relax (3 )}\right ) \log {\relax (x )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________