Optimal. Leaf size=24 \[ -3+\frac {1}{x \left (-e^{x (1+x) (3+3 x)}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.34, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 2, number of rules used = 2, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6688, 6687} \begin {gather*} -\frac {1}{\left (e^{3 x (x+1)^2}-x\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x+e^{3 x (1+x)^2} \left (1+3 x+12 x^2+9 x^3\right )}{\left (e^{3 x (1+x)^2}-x\right )^2 x^2} \, dx\\ &=-\frac {1}{\left (e^{3 x (1+x)^2}-x\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 21, normalized size = 0.88 \begin {gather*} -\frac {1}{\left (e^{3 x (1+x)^2}-x\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{x^{2} - x e^{\left (3 \, x^{3} + 6 \, x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{x^{2} - x e^{\left (3 \, x^{3} + 6 \, x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.83
method | result | size |
risch | \(\frac {1}{x \left (x -{\mathrm e}^{3 x \left (x +1\right )^{2}}\right )}\) | \(20\) |
norman | \(\frac {1}{x \left (x -{\mathrm e}^{3 x^{3}+6 x^{2}+3 x}\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{x^{2} - x e^{\left (3 \, x^{3} + 6 \, x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.08, size = 25, normalized size = 1.04 \begin {gather*} \frac {1}{x^2-x\,{\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{3\,x^3}\,{\mathrm {e}}^{6\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.92 \begin {gather*} - \frac {1}{- x^{2} + x e^{3 x^{3} + 6 x^{2} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________