Optimal. Leaf size=25 \[ \frac {4 e^x}{x}+\frac {(2+x) (-x+\log (4))}{3 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 6, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {12, 14, 2197} \begin {gather*} -\frac {x}{3}+\frac {4 e^x}{x}+\frac {2 \log (4)}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-x^2+e^x (-12+12 x)-2 \log (4)}{x^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {12 e^x (-1+x)}{x^2}+\frac {-x^2-2 \log (4)}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-x^2-2 \log (4)}{x^2} \, dx+4 \int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {4 e^x}{x}+\frac {1}{3} \int \left (-1-\frac {2 \log (4)}{x^2}\right ) \, dx\\ &=\frac {4 e^x}{x}-\frac {x}{3}+\frac {2 \log (4)}{3 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.92 \begin {gather*} \frac {4 e^x}{x}-\frac {x}{3}+\frac {2 \log (4)}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.64, size = 17, normalized size = 0.68 \begin {gather*} -\frac {x^{2} - 12 \, e^{x} - 4 \, \log \relax (2)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 17, normalized size = 0.68 \begin {gather*} -\frac {x^{2} - 12 \, e^{x} - 4 \, \log \relax (2)}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.76
method | result | size |
default | \(-\frac {x}{3}+\frac {4 \,{\mathrm e}^{x}}{x}+\frac {4 \ln \relax (2)}{3 x}\) | \(19\) |
norman | \(\frac {-\frac {x^{2}}{3}+4 \,{\mathrm e}^{x}+\frac {4 \ln \relax (2)}{3}}{x}\) | \(19\) |
risch | \(-\frac {x}{3}+\frac {4 \,{\mathrm e}^{x}}{x}+\frac {4 \ln \relax (2)}{3 x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 22, normalized size = 0.88 \begin {gather*} -\frac {1}{3} \, x + \frac {4 \, \log \relax (2)}{3 \, x} + 4 \, {\rm Ei}\relax (x) - 4 \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 17, normalized size = 0.68 \begin {gather*} \frac {\frac {\ln \left (16\right )}{3}+4\,{\mathrm {e}}^x}{x}-\frac {x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.68 \begin {gather*} - \frac {x}{3} + \frac {4 e^{x}}{x} + \frac {4 \log {\relax (2 )}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________