3.42.81
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 6.30, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(2*E^((-5 + 10*x)/(2*x)))*(-2*x - 5*E^((-5 + 10*x)/(2*x))*Log[4] + 5*E^((-5 + 10*x)/(2*x))*Log[x/5]) +
E^E^((-5 + 10*x)/(2*x))*(-30*x*Log[4] - 75*E^((-5 + 10*x)/(2*x))*Log[4]^2 + (30*x + 150*E^((-5 + 10*x)/(2*x))*
Log[4])*Log[x/5] - 75*E^((-5 + 10*x)/(2*x))*Log[x/5]^2))/(-(x^2*Log[4]^3) + 3*x^2*Log[4]^2*Log[x/5] - 3*x^2*Lo
g[4]*Log[x/5]^2 + x^2*Log[x/5]^3),x]
[Out]
-2*Defer[Int][E^(2*E^(5 - 5/(2*x)))/(x*Log[x/20]^3), x] + 5*Defer[Int][E^(5 + 2*E^(5 - 5/(2*x)) - 5/(2*x))/(x^
2*Log[x/20]^2), x] + 30*Defer[Int][E^E^(5 - 5/(2*x))/(x*Log[x/20]^2), x] - 75*Defer[Int][E^(5 + E^(5 - 5/(2*x)
) - 5/(2*x))/(x^2*Log[x/20]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [F] time = 2.11, size = 0, normalized size = 0.00
Verification is not applicable to the result.
[In]
Integrate[(E^(2*E^((-5 + 10*x)/(2*x)))*(-2*x - 5*E^((-5 + 10*x)/(2*x))*Log[4] + 5*E^((-5 + 10*x)/(2*x))*Log[x/
5]) + E^E^((-5 + 10*x)/(2*x))*(-30*x*Log[4] - 75*E^((-5 + 10*x)/(2*x))*Log[4]^2 + (30*x + 150*E^((-5 + 10*x)/(
2*x))*Log[4])*Log[x/5] - 75*E^((-5 + 10*x)/(2*x))*Log[x/5]^2))/(-(x^2*Log[4]^3) + 3*x^2*Log[4]^2*Log[x/5] - 3*
x^2*Log[4]*Log[x/5]^2 + x^2*Log[x/5]^3),x]
[Out]
Integrate[(E^(2*E^((-5 + 10*x)/(2*x)))*(-2*x - 5*E^((-5 + 10*x)/(2*x))*Log[4] + 5*E^((-5 + 10*x)/(2*x))*Log[x/
5]) + E^E^((-5 + 10*x)/(2*x))*(-30*x*Log[4] - 75*E^((-5 + 10*x)/(2*x))*Log[4]^2 + (30*x + 150*E^((-5 + 10*x)/(
2*x))*Log[4])*Log[x/5] - 75*E^((-5 + 10*x)/(2*x))*Log[x/5]^2))/(-(x^2*Log[4]^3) + 3*x^2*Log[4]^2*Log[x/5] - 3*
x^2*Log[4]*Log[x/5]^2 + x^2*Log[x/5]^3), x]
________________________________________________________________________________________
fricas [B] time = 2.53, size = 64, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(1/2*(10*x-5)/x)*log(1/5*x)-10*log(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-7
5*exp(1/2*(10*x-5)/x)*log(1/5*x)^2+(300*log(2)*exp(1/2*(10*x-5)/x)+30*x)*log(1/5*x)-300*log(2)^2*exp(1/2*(10*x
-5)/x)-60*x*log(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*log(1/5*x)^3-6*x^2*log(2)*log(1/5*x)^2+12*x^2*log(2)^2*log(
1/5*x)-8*x^2*log(2)^3),x, algorithm="fricas")
[Out]
(30*(2*log(2) - log(1/5*x))*e^(e^(5/2*(2*x - 1)/x)) + e^(2*e^(5/2*(2*x - 1)/x)))/(4*log(2)^2 - 4*log(2)*log(1/
5*x) + log(1/5*x)^2)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(1/2*(10*x-5)/x)*log(1/5*x)-10*log(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-7
5*exp(1/2*(10*x-5)/x)*log(1/5*x)^2+(300*log(2)*exp(1/2*(10*x-5)/x)+30*x)*log(1/5*x)-300*log(2)^2*exp(1/2*(10*x
-5)/x)-60*x*log(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*log(1/5*x)^3-6*x^2*log(2)*log(1/5*x)^2+12*x^2*log(2)^2*log(
1/5*x)-8*x^2*log(2)^3),x, algorithm="giac")
[Out]
integrate(((10*e^(5/2*(2*x - 1)/x)*log(2) - 5*e^(5/2*(2*x - 1)/x)*log(1/5*x) + 2*x)*e^(2*e^(5/2*(2*x - 1)/x))
+ 15*(20*e^(5/2*(2*x - 1)/x)*log(2)^2 + 5*e^(5/2*(2*x - 1)/x)*log(1/5*x)^2 + 4*x*log(2) - 2*(10*e^(5/2*(2*x -
1)/x)*log(2) + x)*log(1/5*x))*e^(e^(5/2*(2*x - 1)/x)))/(8*x^2*log(2)^3 - 12*x^2*log(2)^2*log(1/5*x) + 6*x^2*lo
g(2)*log(1/5*x)^2 - x^2*log(1/5*x)^3), x)
________________________________________________________________________________________
maple [F] time = 0.06, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((5*exp(1/2*(10*x-5)/x)*ln(1/5*x)-10*ln(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-75*exp(1/
2*(10*x-5)/x)*ln(1/5*x)^2+(300*ln(2)*exp(1/2*(10*x-5)/x)+30*x)*ln(1/5*x)-300*ln(2)^2*exp(1/2*(10*x-5)/x)-60*x*
ln(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*ln(1/5*x)^3-6*x^2*ln(2)*ln(1/5*x)^2+12*x^2*ln(2)^2*ln(1/5*x)-8*x^2*ln(2)
^3),x)
[Out]
int(((5*exp(1/2*(10*x-5)/x)*ln(1/5*x)-10*ln(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-75*exp(1/
2*(10*x-5)/x)*ln(1/5*x)^2+(300*ln(2)*exp(1/2*(10*x-5)/x)+30*x)*ln(1/5*x)-300*ln(2)^2*exp(1/2*(10*x-5)/x)-60*x*
ln(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*ln(1/5*x)^3-6*x^2*ln(2)*ln(1/5*x)^2+12*x^2*ln(2)^2*ln(1/5*x)-8*x^2*ln(2)
^3),x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(1/2*(10*x-5)/x)*log(1/5*x)-10*log(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-7
5*exp(1/2*(10*x-5)/x)*log(1/5*x)^2+(300*log(2)*exp(1/2*(10*x-5)/x)+30*x)*log(1/5*x)-300*log(2)^2*exp(1/2*(10*x
-5)/x)-60*x*log(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*log(1/5*x)^3-6*x^2*log(2)*log(1/5*x)^2+12*x^2*log(2)^2*log(
1/5*x)-8*x^2*log(2)^3),x, algorithm="maxima")
[Out]
integrate(((10*e^(5/2*(2*x - 1)/x)*log(2) - 5*e^(5/2*(2*x - 1)/x)*log(1/5*x) + 2*x)*e^(2*e^(5/2*(2*x - 1)/x))
+ 15*(20*e^(5/2*(2*x - 1)/x)*log(2)^2 + 5*e^(5/2*(2*x - 1)/x)*log(1/5*x)^2 + 4*x*log(2) - 2*(10*e^(5/2*(2*x -
1)/x)*log(2) + x)*log(1/5*x))*e^(e^(5/2*(2*x - 1)/x)))/(8*x^2*log(2)^3 - 12*x^2*log(2)^2*log(1/5*x) + 6*x^2*lo
g(2)*log(1/5*x)^2 - x^2*log(1/5*x)^3), x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(2*exp((5*x - 5/2)/x))*(2*x - 5*log(x/5)*exp((5*x - 5/2)/x) + 10*exp((5*x - 5/2)/x)*log(2)) + exp(exp(
(5*x - 5/2)/x))*(60*x*log(2) - log(x/5)*(30*x + 300*exp((5*x - 5/2)/x)*log(2)) + 75*log(x/5)^2*exp((5*x - 5/2)
/x) + 300*exp((5*x - 5/2)/x)*log(2)^2))/(8*x^2*log(2)^3 - x^2*log(x/5)^3 - 12*x^2*log(x/5)*log(2)^2 + 6*x^2*lo
g(x/5)^2*log(2)),x)
[Out]
-int(-(exp(2*exp((5*x - 5/2)/x))*(2*x - 5*log(x/5)*exp((5*x - 5/2)/x) + 10*exp((5*x - 5/2)/x)*log(2)) + exp(ex
p((5*x - 5/2)/x))*(60*x*log(2) - log(x/5)*(30*x + 300*exp((5*x - 5/2)/x)*log(2)) + 75*log(x/5)^2*exp((5*x - 5/
2)/x) + 300*exp((5*x - 5/2)/x)*log(2)^2))/(8*x^2*log(2)^3 - x^2*log(x/5)^3 - 12*x^2*log(x/5)*log(2)^2 + 6*x^2*
log(x/5)^2*log(2)), x)
________________________________________________________________________________________
sympy [B] time = 0.60, size = 97, normalized size = 3.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(1/2*(10*x-5)/x)*ln(1/5*x)-10*ln(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))**2+(-75
*exp(1/2*(10*x-5)/x)*ln(1/5*x)**2+(300*ln(2)*exp(1/2*(10*x-5)/x)+30*x)*ln(1/5*x)-300*ln(2)**2*exp(1/2*(10*x-5)
/x)-60*x*ln(2))*exp(exp(1/2*(10*x-5)/x)))/(x**2*ln(1/5*x)**3-6*x**2*ln(2)*ln(1/5*x)**2+12*x**2*ln(2)**2*ln(1/5
*x)-8*x**2*ln(2)**3),x)
[Out]
((log(x/5) - 2*log(2))*exp(2*exp((5*x - 5/2)/x)) + (-30*log(x/5)**2 + 120*log(2)*log(x/5) - 120*log(2)**2)*exp
(exp((5*x - 5/2)/x)))/(log(x/5)**3 - 6*log(2)*log(x/5)**2 + 12*log(2)**2*log(x/5) - 8*log(2)**3)
________________________________________________________________________________________