3.42.81 e2e5+10x2x(2x5e5+10x2xlog(4)+5e5+10x2xlog(x5))+ee5+10x2x(30xlog(4)75e5+10x2xlog2(4)+(30x+150e5+10x2xlog(4))log(x5)75e5+10x2xlog2(x5))x2log3(4)+3x2log2(4)log(x5)3x2log(4)log2(x5)+x2log3(x5)dx

Optimal. Leaf size=32 (15ee552xlog(4)+log(x5))2

________________________________________________________________________________________

Rubi [F]  time = 6.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e2e5+10x2x(2x5e5+10x2xlog(4)+5e5+10x2xlog(x5))+ee5+10x2x(30xlog(4)75e5+10x2xlog2(4)+(30x+150e5+10x2xlog(4))log(x5)75e5+10x2xlog2(x5))x2log3(4)+3x2log2(4)log(x5)3x2log(4)log2(x5)+x2log3(x5)dx

Verification is not applicable to the result.

[In]

Int[(E^(2*E^((-5 + 10*x)/(2*x)))*(-2*x - 5*E^((-5 + 10*x)/(2*x))*Log[4] + 5*E^((-5 + 10*x)/(2*x))*Log[x/5]) +
E^E^((-5 + 10*x)/(2*x))*(-30*x*Log[4] - 75*E^((-5 + 10*x)/(2*x))*Log[4]^2 + (30*x + 150*E^((-5 + 10*x)/(2*x))*
Log[4])*Log[x/5] - 75*E^((-5 + 10*x)/(2*x))*Log[x/5]^2))/(-(x^2*Log[4]^3) + 3*x^2*Log[4]^2*Log[x/5] - 3*x^2*Lo
g[4]*Log[x/5]^2 + x^2*Log[x/5]^3),x]

[Out]

-2*Defer[Int][E^(2*E^(5 - 5/(2*x)))/(x*Log[x/20]^3), x] + 5*Defer[Int][E^(5 + 2*E^(5 - 5/(2*x)) - 5/(2*x))/(x^
2*Log[x/20]^2), x] + 30*Defer[Int][E^E^(5 - 5/(2*x))/(x*Log[x/20]^2), x] - 75*Defer[Int][E^(5 + E^(5 - 5/(2*x)
) - 5/(2*x))/(x^2*Log[x/20]), x]

Rubi steps

integral=ee552x52x(ee552x+15log(4)15log(x5))(2e52/xx5e5log(4)+5e5log(x5))x2log3(x20)dx=(2ee552x(ee552x+15log(4)15log(x5))xlog3(x20)5e5+e552x52x(ee552x+15log(4)15log(x5))(log(20)log(x))x2log3(x20))dx=(2ee552x(ee552x+15log(4)15log(x5))xlog3(x20)dx)5e5+e552x52x(ee552x+15log(4)15log(x5))(log(20)log(x))x2log3(x20)dx=(2(e2e552xxlog3(x20)15ee552xxlog2(x20))dx)5(e5+2e552x52xx2log2(x20)+15e5+e552x52xx2log(x20))dx=(2e2e552xxlog3(x20)dx)+5e5+2e552x52xx2log2(x20)dx+30ee552xxlog2(x20)dx75e5+e552x52xx2log(x20)dx

________________________________________________________________________________________

Mathematica [F]  time = 2.11, size = 0, normalized size = 0.00 e2e5+10x2x(2x5e5+10x2xlog(4)+5e5+10x2xlog(x5))+ee5+10x2x(30xlog(4)75e5+10x2xlog2(4)+(30x+150e5+10x2xlog(4))log(x5)75e5+10x2xlog2(x5))x2log3(4)+3x2log2(4)log(x5)3x2log(4)log2(x5)+x2log3(x5)dx

Verification is not applicable to the result.

[In]

Integrate[(E^(2*E^((-5 + 10*x)/(2*x)))*(-2*x - 5*E^((-5 + 10*x)/(2*x))*Log[4] + 5*E^((-5 + 10*x)/(2*x))*Log[x/
5]) + E^E^((-5 + 10*x)/(2*x))*(-30*x*Log[4] - 75*E^((-5 + 10*x)/(2*x))*Log[4]^2 + (30*x + 150*E^((-5 + 10*x)/(
2*x))*Log[4])*Log[x/5] - 75*E^((-5 + 10*x)/(2*x))*Log[x/5]^2))/(-(x^2*Log[4]^3) + 3*x^2*Log[4]^2*Log[x/5] - 3*
x^2*Log[4]*Log[x/5]^2 + x^2*Log[x/5]^3),x]

[Out]

Integrate[(E^(2*E^((-5 + 10*x)/(2*x)))*(-2*x - 5*E^((-5 + 10*x)/(2*x))*Log[4] + 5*E^((-5 + 10*x)/(2*x))*Log[x/
5]) + E^E^((-5 + 10*x)/(2*x))*(-30*x*Log[4] - 75*E^((-5 + 10*x)/(2*x))*Log[4]^2 + (30*x + 150*E^((-5 + 10*x)/(
2*x))*Log[4])*Log[x/5] - 75*E^((-5 + 10*x)/(2*x))*Log[x/5]^2))/(-(x^2*Log[4]^3) + 3*x^2*Log[4]^2*Log[x/5] - 3*
x^2*Log[4]*Log[x/5]^2 + x^2*Log[x/5]^3), x]

________________________________________________________________________________________

fricas [B]  time = 2.53, size = 64, normalized size = 2.00 30(2log(2)log(15x))e(e(5(2x1)2x))+e(2e(5(2x1)2x))4log(2)24log(2)log(15x)+log(15x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(1/2*(10*x-5)/x)*log(1/5*x)-10*log(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-7
5*exp(1/2*(10*x-5)/x)*log(1/5*x)^2+(300*log(2)*exp(1/2*(10*x-5)/x)+30*x)*log(1/5*x)-300*log(2)^2*exp(1/2*(10*x
-5)/x)-60*x*log(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*log(1/5*x)^3-6*x^2*log(2)*log(1/5*x)^2+12*x^2*log(2)^2*log(
1/5*x)-8*x^2*log(2)^3),x, algorithm="fricas")

[Out]

(30*(2*log(2) - log(1/5*x))*e^(e^(5/2*(2*x - 1)/x)) + e^(2*e^(5/2*(2*x - 1)/x)))/(4*log(2)^2 - 4*log(2)*log(1/
5*x) + log(1/5*x)^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (10e(5(2x1)2x)log(2)5e(5(2x1)2x)log(15x)+2x)e(2e(5(2x1)2x))+15(20e(5(2x1)2x)log(2)2+5e(5(2x1)2x)log(15x)2+4xlog(2)2(10e(5(2x1)2x)log(2)+x)log(15x))e(e(5(2x1)2x))8x2log(2)312x2log(2)2log(15x)+6x2log(2)log(15x)2x2log(15x)3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(1/2*(10*x-5)/x)*log(1/5*x)-10*log(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-7
5*exp(1/2*(10*x-5)/x)*log(1/5*x)^2+(300*log(2)*exp(1/2*(10*x-5)/x)+30*x)*log(1/5*x)-300*log(2)^2*exp(1/2*(10*x
-5)/x)-60*x*log(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*log(1/5*x)^3-6*x^2*log(2)*log(1/5*x)^2+12*x^2*log(2)^2*log(
1/5*x)-8*x^2*log(2)^3),x, algorithm="giac")

[Out]

integrate(((10*e^(5/2*(2*x - 1)/x)*log(2) - 5*e^(5/2*(2*x - 1)/x)*log(1/5*x) + 2*x)*e^(2*e^(5/2*(2*x - 1)/x))
+ 15*(20*e^(5/2*(2*x - 1)/x)*log(2)^2 + 5*e^(5/2*(2*x - 1)/x)*log(1/5*x)^2 + 4*x*log(2) - 2*(10*e^(5/2*(2*x -
1)/x)*log(2) + x)*log(1/5*x))*e^(e^(5/2*(2*x - 1)/x)))/(8*x^2*log(2)^3 - 12*x^2*log(2)^2*log(1/5*x) + 6*x^2*lo
g(2)*log(1/5*x)^2 - x^2*log(1/5*x)^3), x)

________________________________________________________________________________________

maple [F]  time = 0.06, size = 0, normalized size = 0.00 (5e10x52xln(x5)10ln(2)e10x52x2x)e2e10x52x+(75e10x52xln(x5)2+(300ln(2)e10x52x+30x)ln(x5)300ln(2)2e10x52x60xln(2))ee10x52xx2ln(x5)36x2ln(2)ln(x5)2+12x2ln(2)2ln(x5)8x2ln(2)3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*exp(1/2*(10*x-5)/x)*ln(1/5*x)-10*ln(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-75*exp(1/
2*(10*x-5)/x)*ln(1/5*x)^2+(300*ln(2)*exp(1/2*(10*x-5)/x)+30*x)*ln(1/5*x)-300*ln(2)^2*exp(1/2*(10*x-5)/x)-60*x*
ln(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*ln(1/5*x)^3-6*x^2*ln(2)*ln(1/5*x)^2+12*x^2*ln(2)^2*ln(1/5*x)-8*x^2*ln(2)
^3),x)

[Out]

int(((5*exp(1/2*(10*x-5)/x)*ln(1/5*x)-10*ln(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-75*exp(1/
2*(10*x-5)/x)*ln(1/5*x)^2+(300*ln(2)*exp(1/2*(10*x-5)/x)+30*x)*ln(1/5*x)-300*ln(2)^2*exp(1/2*(10*x-5)/x)-60*x*
ln(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*ln(1/5*x)^3-6*x^2*ln(2)*ln(1/5*x)^2+12*x^2*ln(2)^2*ln(1/5*x)-8*x^2*ln(2)
^3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 (10e(5(2x1)2x)log(2)5e(5(2x1)2x)log(15x)+2x)e(2e(5(2x1)2x))+15(20e(5(2x1)2x)log(2)2+5e(5(2x1)2x)log(15x)2+4xlog(2)2(10e(5(2x1)2x)log(2)+x)log(15x))e(e(5(2x1)2x))8x2log(2)312x2log(2)2log(15x)+6x2log(2)log(15x)2x2log(15x)3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(1/2*(10*x-5)/x)*log(1/5*x)-10*log(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))^2+(-7
5*exp(1/2*(10*x-5)/x)*log(1/5*x)^2+(300*log(2)*exp(1/2*(10*x-5)/x)+30*x)*log(1/5*x)-300*log(2)^2*exp(1/2*(10*x
-5)/x)-60*x*log(2))*exp(exp(1/2*(10*x-5)/x)))/(x^2*log(1/5*x)^3-6*x^2*log(2)*log(1/5*x)^2+12*x^2*log(2)^2*log(
1/5*x)-8*x^2*log(2)^3),x, algorithm="maxima")

[Out]

integrate(((10*e^(5/2*(2*x - 1)/x)*log(2) - 5*e^(5/2*(2*x - 1)/x)*log(1/5*x) + 2*x)*e^(2*e^(5/2*(2*x - 1)/x))
+ 15*(20*e^(5/2*(2*x - 1)/x)*log(2)^2 + 5*e^(5/2*(2*x - 1)/x)*log(1/5*x)^2 + 4*x*log(2) - 2*(10*e^(5/2*(2*x -
1)/x)*log(2) + x)*log(1/5*x))*e^(e^(5/2*(2*x - 1)/x)))/(8*x^2*log(2)^3 - 12*x^2*log(2)^2*log(1/5*x) + 6*x^2*lo
g(2)*log(1/5*x)^2 - x^2*log(1/5*x)^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 e2e5x52x(2x5ln(x5)e5x52x+10e5x52xln(2))+ee5x52x(75e5x52xln(x5)2+(30x300e5x52xln(2))ln(x5)+60xln(2)+300e5x52xln(2)2)x2ln(x5)3+6ln(2)x2ln(x5)212ln(2)2x2ln(x5)+8ln(2)3x2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*exp((5*x - 5/2)/x))*(2*x - 5*log(x/5)*exp((5*x - 5/2)/x) + 10*exp((5*x - 5/2)/x)*log(2)) + exp(exp(
(5*x - 5/2)/x))*(60*x*log(2) - log(x/5)*(30*x + 300*exp((5*x - 5/2)/x)*log(2)) + 75*log(x/5)^2*exp((5*x - 5/2)
/x) + 300*exp((5*x - 5/2)/x)*log(2)^2))/(8*x^2*log(2)^3 - x^2*log(x/5)^3 - 12*x^2*log(x/5)*log(2)^2 + 6*x^2*lo
g(x/5)^2*log(2)),x)

[Out]

-int(-(exp(2*exp((5*x - 5/2)/x))*(2*x - 5*log(x/5)*exp((5*x - 5/2)/x) + 10*exp((5*x - 5/2)/x)*log(2)) + exp(ex
p((5*x - 5/2)/x))*(60*x*log(2) - log(x/5)*(30*x + 300*exp((5*x - 5/2)/x)*log(2)) + 75*log(x/5)^2*exp((5*x - 5/
2)/x) + 300*exp((5*x - 5/2)/x)*log(2)^2))/(8*x^2*log(2)^3 - x^2*log(x/5)^3 - 12*x^2*log(x/5)*log(2)^2 + 6*x^2*
log(x/5)^2*log(2)), x)

________________________________________________________________________________________

sympy [B]  time = 0.60, size = 97, normalized size = 3.03 (log(x5)2log(2))e2e5x52x+(30log(x5)2+120log(2)log(x5)120log(2)2)ee5x52xlog(x5)36log(2)log(x5)2+12log(2)2log(x5)8log(2)3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(1/2*(10*x-5)/x)*ln(1/5*x)-10*ln(2)*exp(1/2*(10*x-5)/x)-2*x)*exp(exp(1/2*(10*x-5)/x))**2+(-75
*exp(1/2*(10*x-5)/x)*ln(1/5*x)**2+(300*ln(2)*exp(1/2*(10*x-5)/x)+30*x)*ln(1/5*x)-300*ln(2)**2*exp(1/2*(10*x-5)
/x)-60*x*ln(2))*exp(exp(1/2*(10*x-5)/x)))/(x**2*ln(1/5*x)**3-6*x**2*ln(2)*ln(1/5*x)**2+12*x**2*ln(2)**2*ln(1/5
*x)-8*x**2*ln(2)**3),x)

[Out]

((log(x/5) - 2*log(2))*exp(2*exp((5*x - 5/2)/x)) + (-30*log(x/5)**2 + 120*log(2)*log(x/5) - 120*log(2)**2)*exp
(exp((5*x - 5/2)/x)))/(log(x/5)**3 - 6*log(2)*log(x/5)**2 + 12*log(2)**2*log(x/5) - 8*log(2)**3)

________________________________________________________________________________________