3.42.83 20x+2x2+(10x+x2)log(2)+(81+18x)log(3)x4dx

Optimal. Leaf size=30 (5x)(2+log(2))x+9(3x)log(3)x2x

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 29, normalized size of antiderivative = 0.97, number of steps used = 2, number of rules used = 1, integrand size = 31, number of rulesintegrand size = 0.032, Rules used = {14} 27log(3)x3+10log(1968332)x22+log(2)x

Antiderivative was successfully verified.

[In]

Int[(-20*x + 2*x^2 + (-10*x + x^2)*Log[2] + (-81 + 18*x)*Log[3])/x^4,x]

[Out]

-((2 + Log[2])/x) + (27*Log[3])/x^3 + (10 - Log[19683/32])/x^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

integral=(2+log(2)x281log(3)x4+2(10+log(1968332))x3)dx=2+log(2)x+27log(3)x3+10log(1968332)x2

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 30, normalized size = 1.00 2log(2)x+27log(3)x3+109log(3)+log(32)x2

Antiderivative was successfully verified.

[In]

Integrate[(-20*x + 2*x^2 + (-10*x + x^2)*Log[2] + (-81 + 18*x)*Log[3])/x^4,x]

[Out]

(-2 - Log[2])/x + (27*Log[3])/x^3 + (10 - 9*Log[3] + Log[32])/x^2

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 31, normalized size = 1.03 2x2+9(x3)log(3)+(x25x)log(2)10xx3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*log(3)+(x^2-10*x)*log(2)+2*x^2-20*x)/x^4,x, algorithm="fricas")

[Out]

-(2*x^2 + 9*(x - 3)*log(3) + (x^2 - 5*x)*log(2) - 10*x)/x^3

________________________________________________________________________________________

giac [A]  time = 0.14, size = 34, normalized size = 1.13 x2log(2)+2x2+9xlog(3)5xlog(2)10x27log(3)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*log(3)+(x^2-10*x)*log(2)+2*x^2-20*x)/x^4,x, algorithm="giac")

[Out]

-(x^2*log(2) + 2*x^2 + 9*x*log(3) - 5*x*log(2) - 10*x - 27*log(3))/x^3

________________________________________________________________________________________

maple [A]  time = 0.04, size = 32, normalized size = 1.07




method result size



norman (2ln(2))x2+(5ln(2)9ln(3)+10)x+27ln(3)x3 32
risch (2ln(2))x2+(5ln(2)9ln(3)+10)x+27ln(3)x3 32
default 27ln(3)x310ln(2)+18ln(3)202x2ln(2)+2x 33
gosper x2ln(2)5xln(2)+9xln(3)+2x227ln(3)10xx3 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((18*x-81)*ln(3)+(x^2-10*x)*ln(2)+2*x^2-20*x)/x^4,x,method=_RETURNVERBOSE)

[Out]

((-2-ln(2))*x^2+(5*ln(2)-9*ln(3)+10)*x+27*ln(3))/x^3

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 30, normalized size = 1.00 x2(log(2)+2)+x(9log(3)5log(2)10)27log(3)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*log(3)+(x^2-10*x)*log(2)+2*x^2-20*x)/x^4,x, algorithm="maxima")

[Out]

-(x^2*(log(2) + 2) + x*(9*log(3) - 5*log(2) - 10) - 27*log(3))/x^3

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 24, normalized size = 0.80 (ln(2)+2)x2+(ln(1968332)10)xln(7625597484987)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(20*x - log(3)*(18*x - 81) + log(2)*(10*x - x^2) - 2*x^2)/x^4,x)

[Out]

-(x^2*(log(2) + 2) - log(7625597484987) + x*(log(19683/32) - 10))/x^3

________________________________________________________________________________________

sympy [A]  time = 0.49, size = 31, normalized size = 1.03 x2(2log(2))+x(9log(3)+5log(2)+10)+27log(3)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x-81)*ln(3)+(x**2-10*x)*ln(2)+2*x**2-20*x)/x**4,x)

[Out]

(x**2*(-2 - log(2)) + x*(-9*log(3) + 5*log(2) + 10) + 27*log(3))/x**3

________________________________________________________________________________________