Optimal. Leaf size=25 \[ 1+3 x-x \left (1+4 x-\log (x) \left (\frac {3}{x^2}+\log (x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 32, normalized size of antiderivative = 1.28, number of steps used = 8, number of rules used = 4, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {14, 2334, 2296, 2295} \begin {gather*} -4 x^2+2 x+x \log ^2(x)-2 x \log (x)+\left (2 x+\frac {3}{x}\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rule 2296
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3+2 x^2-8 x^3}{x^2}+\frac {\left (-3+2 x^2\right ) \log (x)}{x^2}+\log ^2(x)\right ) \, dx\\ &=\int \frac {3+2 x^2-8 x^3}{x^2} \, dx+\int \frac {\left (-3+2 x^2\right ) \log (x)}{x^2} \, dx+\int \log ^2(x) \, dx\\ &=\left (\frac {3}{x}+2 x\right ) \log (x)+x \log ^2(x)-2 \int \log (x) \, dx-\int \left (2+\frac {3}{x^2}\right ) \, dx+\int \left (2+\frac {3}{x^2}-8 x\right ) \, dx\\ &=2 x-4 x^2-2 x \log (x)+\left (\frac {3}{x}+2 x\right ) \log (x)+x \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 0.88 \begin {gather*} 2 x-4 x^2+\frac {3 \log (x)}{x}+x \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 27, normalized size = 1.08 \begin {gather*} \frac {x^{2} \log \relax (x)^{2} - 4 \, x^{3} + 2 \, x^{2} + 3 \, \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 22, normalized size = 0.88 \begin {gather*} x \log \relax (x)^{2} - 4 \, x^{2} + 2 \, x + \frac {3 \, \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 0.92
method | result | size |
default | \(x \ln \relax (x )^{2}+2 x -4 x^{2}+\frac {3 \ln \relax (x )}{x}\) | \(23\) |
risch | \(x \ln \relax (x )^{2}+2 x -4 x^{2}+\frac {3 \ln \relax (x )}{x}\) | \(23\) |
norman | \(\frac {x^{2} \ln \relax (x )^{2}+2 x^{2}-4 x^{3}+3 \ln \relax (x )}{x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 30, normalized size = 1.20 \begin {gather*} {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x - 4 \, x^{2} + 2 \, x \log \relax (x) + \frac {3 \, \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.91, size = 21, normalized size = 0.84 \begin {gather*} \frac {3\,\ln \relax (x)}{x}+x\,\left ({\ln \relax (x)}^2+2\right )-4\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 0.80 \begin {gather*} - 4 x^{2} + x \log {\relax (x )}^{2} + 2 x + \frac {3 \log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________