3.42.84 3+2x28x3+(3+2x2)log(x)+x2log2(x)x2dx

Optimal. Leaf size=25 1+3xx(1+4xlog(x)(3x2+log(x)))

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 32, normalized size of antiderivative = 1.28, number of steps used = 8, number of rules used = 4, integrand size = 34, number of rulesintegrand size = 0.118, Rules used = {14, 2334, 2296, 2295} 4x2+2x+xlog2(x)2xlog(x)+(2x+3x)log(x)

Antiderivative was successfully verified.

[In]

Int[(3 + 2*x^2 - 8*x^3 + (-3 + 2*x^2)*Log[x] + x^2*Log[x]^2)/x^2,x]

[Out]

2*x - 4*x^2 - 2*x*Log[x] + (3/x + 2*x)*Log[x] + x*Log[x]^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rubi steps

integral=(3+2x28x3x2+(3+2x2)log(x)x2+log2(x))dx=3+2x28x3x2dx+(3+2x2)log(x)x2dx+log2(x)dx=(3x+2x)log(x)+xlog2(x)2log(x)dx(2+3x2)dx+(2+3x28x)dx=2x4x22xlog(x)+(3x+2x)log(x)+xlog2(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 22, normalized size = 0.88 2x4x2+3log(x)x+xlog2(x)

Antiderivative was successfully verified.

[In]

Integrate[(3 + 2*x^2 - 8*x^3 + (-3 + 2*x^2)*Log[x] + x^2*Log[x]^2)/x^2,x]

[Out]

2*x - 4*x^2 + (3*Log[x])/x + x*Log[x]^2

________________________________________________________________________________________

fricas [A]  time = 0.93, size = 27, normalized size = 1.08 x2log(x)24x3+2x2+3log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(x)^2+(2*x^2-3)*log(x)-8*x^3+2*x^2+3)/x^2,x, algorithm="fricas")

[Out]

(x^2*log(x)^2 - 4*x^3 + 2*x^2 + 3*log(x))/x

________________________________________________________________________________________

giac [A]  time = 0.13, size = 22, normalized size = 0.88 xlog(x)24x2+2x+3log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(x)^2+(2*x^2-3)*log(x)-8*x^3+2*x^2+3)/x^2,x, algorithm="giac")

[Out]

x*log(x)^2 - 4*x^2 + 2*x + 3*log(x)/x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 23, normalized size = 0.92




method result size



default xln(x)2+2x4x2+3ln(x)x 23
risch xln(x)2+2x4x2+3ln(x)x 23
norman x2ln(x)2+2x24x3+3ln(x)x 28



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*ln(x)^2+(2*x^2-3)*ln(x)-8*x^3+2*x^2+3)/x^2,x,method=_RETURNVERBOSE)

[Out]

x*ln(x)^2+2*x-4*x^2+3*ln(x)/x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 30, normalized size = 1.20 (log(x)22log(x)+2)x4x2+2xlog(x)+3log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(x)^2+(2*x^2-3)*log(x)-8*x^3+2*x^2+3)/x^2,x, algorithm="maxima")

[Out]

(log(x)^2 - 2*log(x) + 2)*x - 4*x^2 + 2*x*log(x) + 3*log(x)/x

________________________________________________________________________________________

mupad [B]  time = 2.91, size = 21, normalized size = 0.84 3ln(x)x+x(ln(x)2+2)4x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*log(x)^2 + 2*x^2 - 8*x^3 + log(x)*(2*x^2 - 3) + 3)/x^2,x)

[Out]

(3*log(x))/x + x*(log(x)^2 + 2) - 4*x^2

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 20, normalized size = 0.80 4x2+xlog(x)2+2x+3log(x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2*ln(x)**2+(2*x**2-3)*ln(x)-8*x**3+2*x**2+3)/x**2,x)

[Out]

-4*x**2 + x*log(x)**2 + 2*x + 3*log(x)/x

________________________________________________________________________________________