Optimal. Leaf size=14 \[ \frac {2}{-4-x+e^x x} \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 15, normalized size of antiderivative = 1.07, number of steps used = 3, number of rules used = 3, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {2}{\left (1-e^x\right ) x+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1-e^x-e^x x\right )}{\left (4-\left (-1+e^x\right ) x\right )^2} \, dx\\ &=2 \int \frac {1-e^x-e^x x}{\left (4-\left (-1+e^x\right ) x\right )^2} \, dx\\ &=-\frac {2}{4+\left (1-e^x\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 13, normalized size = 0.93 \begin {gather*} \frac {2}{-4+\left (-1+e^x\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 13, normalized size = 0.93 \begin {gather*} \frac {2}{x e^{x} - x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 13, normalized size = 0.93 \begin {gather*} \frac {2}{x e^{x} - x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 14, normalized size = 1.00
method | result | size |
norman | \(\frac {2}{{\mathrm e}^{x} x -4-x}\) | \(14\) |
risch | \(\frac {2}{{\mathrm e}^{x} x -4-x}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 13, normalized size = 0.93 \begin {gather*} \frac {2}{x e^{x} - x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 12, normalized size = 0.86 \begin {gather*} -\frac {2}{x-x\,{\mathrm {e}}^x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 8, normalized size = 0.57 \begin {gather*} \frac {2}{x e^{x} - x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________