Optimal. Leaf size=30 \[ \frac {3}{8 \left (-(1-5 x)^2+\frac {e^x}{1+\frac {\log (4)}{x^2}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-30 x^4+150 x^5+\left (-60 x^2+300 x^3\right ) \log (4)+(-30+150 x) \log ^2(4)+e^x \left (-3 x^4+\left (-6 x-3 x^2\right ) \log (4)\right )}{8 x^4+8 e^{2 x} x^4-160 x^5+1200 x^6-4000 x^7+5000 x^8+\left (16 x^2-320 x^3+2400 x^4-8000 x^5+10000 x^6\right ) \log (4)+\left (8-160 x+1200 x^2-4000 x^3+5000 x^4\right ) \log ^2(4)+e^x \left (-16 x^4+160 x^5-400 x^6+\left (-16 x^2+160 x^3-400 x^4\right ) \log (4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-\left (\left (10+e^x\right ) x^4\right )+50 x^5-\left (20+e^x\right ) x^2 \log (4)+100 x^3 \log (4)-2 x \left (e^x-25 \log (4)\right ) \log (4)-10 \log ^2(4)\right )}{8 \left (10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 \left (1-e^x+25 \log (4)\right )\right )^2} \, dx\\ &=\frac {3}{8} \int \frac {-\left (\left (10+e^x\right ) x^4\right )+50 x^5-\left (20+e^x\right ) x^2 \log (4)+100 x^3 \log (4)-2 x \left (e^x-25 \log (4)\right ) \log (4)-10 \log ^2(4)}{\left (10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 \left (1-e^x+25 \log (4)\right )\right )^2} \, dx\\ &=\frac {3}{8} \int \left (\frac {-x^3-x \log (4)-\log (16)}{x \left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )}+\frac {(1-5 x) \left (-11 x^5+5 x^6-12 x^3 \log (4)+10 x^4 \log (4)-2 \log ^2(4)-x \log ^2(4)-2 x^2 \log (4) (1-\log (32))\right )}{x \left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}\right ) \, dx\\ &=\frac {3}{8} \int \frac {-x^3-x \log (4)-\log (16)}{x \left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )} \, dx+\frac {3}{8} \int \frac {(1-5 x) \left (-11 x^5+5 x^6-12 x^3 \log (4)+10 x^4 \log (4)-2 \log ^2(4)-x \log ^2(4)-2 x^2 \log (4) (1-\log (32))\right )}{x \left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx\\ &=\frac {3}{8} \int \left (\frac {x^2}{-e^x x^2-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 (1+25 \log (4))}+\frac {\log (4)}{-e^x x^2-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 (1+25 \log (4))}+\frac {\log (16)}{x \left (-e^x x^2-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 (1+25 \log (4))\right )}\right ) \, dx+\frac {3}{8} \int \left (\frac {60 x^5}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}-\frac {25 x^6}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}+\frac {x^4 (-11-50 \log (4))}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}+\frac {70 x^3 \log (4)}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}+\frac {9 \log ^2(4)}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}-\frac {2 \log ^2(4)}{x \left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}+\frac {2 x^2 \log (4) (-1-5 \log (32))}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}+\frac {2 x \log (4) (-1+\log (1024))}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2}\right ) \, dx\\ &=\frac {3}{8} \int \frac {x^2}{-e^x x^2-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 (1+25 \log (4))} \, dx-\frac {75}{8} \int \frac {x^6}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx+\frac {45}{2} \int \frac {x^5}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx+\frac {1}{8} (3 \log (4)) \int \frac {1}{-e^x x^2-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 (1+25 \log (4))} \, dx+\frac {1}{4} (105 \log (4)) \int \frac {x^3}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx-\frac {1}{4} \left (3 \log ^2(4)\right ) \int \frac {1}{x \left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx+\frac {1}{8} \left (27 \log ^2(4)\right ) \int \frac {1}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx-\frac {1}{8} (3 (11+50 \log (4))) \int \frac {x^4}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx+\frac {1}{8} (3 \log (16)) \int \frac {1}{x \left (-e^x x^2-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 (1+25 \log (4))\right )} \, dx-\frac {1}{4} (3 \log (4) (1+5 \log (32))) \int \frac {x^2}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx-\frac {1}{4} (3 \log (4) (1-\log (1024))) \int \frac {x}{\left (e^x x^2+10 x^3-25 x^4-\log (4)+10 x \log (4)-x^2 (1+25 \log (4))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 45, normalized size = 1.50 \begin {gather*} -\frac {3 \left (x^2+\log (4)\right )}{8 \left (-10 x^3+25 x^4+\log (4)-10 x \log (4)+x^2 \left (1-e^x+25 \log (4)\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 47, normalized size = 1.57 \begin {gather*} -\frac {3 \, {\left (x^{2} + 2 \, \log \relax (2)\right )}}{8 \, {\left (25 \, x^{4} - 10 \, x^{3} - x^{2} e^{x} + x^{2} + 2 \, {\left (25 \, x^{2} - 10 \, x + 1\right )} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 50, normalized size = 1.67
method | result | size |
risch | \(-\frac {3 \left (x^{2}+2 \ln \relax (2)\right )}{8 \left (25 x^{4}+50 x^{2} \ln \relax (2)-10 x^{3}-{\mathrm e}^{x} x^{2}-20 x \ln \relax (2)+x^{2}+2 \ln \relax (2)\right )}\) | \(50\) |
norman | \(\frac {-\frac {3 x^{2}}{8}-\frac {3 \ln \relax (2)}{4}}{25 x^{4}+50 x^{2} \ln \relax (2)-10 x^{3}-{\mathrm e}^{x} x^{2}-20 x \ln \relax (2)+x^{2}+2 \ln \relax (2)}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 49, normalized size = 1.63 \begin {gather*} -\frac {3 \, {\left (x^{2} + 2 \, \log \relax (2)\right )}}{8 \, {\left (25 \, x^{4} - 10 \, x^{3} + x^{2} {\left (50 \, \log \relax (2) + 1\right )} - x^{2} e^{x} - 20 \, x \log \relax (2) + 2 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (3\,x^2+6\,x\right )+3\,x^4\right )-4\,{\ln \relax (2)}^2\,\left (150\,x-30\right )+2\,\ln \relax (2)\,\left (60\,x^2-300\,x^3\right )+30\,x^4-150\,x^5}{4\,{\ln \relax (2)}^2\,\left (5000\,x^4-4000\,x^3+1200\,x^2-160\,x+8\right )-{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (400\,x^4-160\,x^3+16\,x^2\right )+16\,x^4-160\,x^5+400\,x^6\right )+2\,\ln \relax (2)\,\left (10000\,x^6-8000\,x^5+2400\,x^4-320\,x^3+16\,x^2\right )+8\,x^4\,{\mathrm {e}}^{2\,x}+8\,x^4-160\,x^5+1200\,x^6-4000\,x^7+5000\,x^8} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.30, size = 53, normalized size = 1.77 \begin {gather*} \frac {3 x^{2} + 6 \log {\relax (2 )}}{- 200 x^{4} + 80 x^{3} + 8 x^{2} e^{x} - 400 x^{2} \log {\relax (2 )} - 8 x^{2} + 160 x \log {\relax (2 )} - 16 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________