Optimal. Leaf size=33 \[ e^{2 \left (e^3-2 x\right )^2-2 x+\frac {4}{1+x \log (4)-\frac {1}{\log (x)}}} \]
________________________________________________________________________________________
Rubi [F] time = 36.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 \left (-e^6+x+4 e^3 x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (-4-2 x-8 e^3 x+16 x^2+\left (4 x+16 e^3 x-32 x^2+\left (4 x^2+16 e^3 x^2-32 x^3\right ) \log (4)\right ) \log (x)+\left (-2 x-8 e^3 x+16 x^2+\left (-4 x-4 x^2-16 e^3 x^2+32 x^3\right ) \log (4)+\left (-2 x^3-8 e^3 x^3+16 x^4\right ) \log ^2(4)\right ) \log ^2(x)\right )}{x+\left (-2 x-2 x^2 \log (4)\right ) \log (x)+\left (x+2 x^2 \log (4)+x^3 \log ^2(4)\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {2 \left (-e^6+x+4 e^3 x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (-4+\left (-2-8 e^3\right ) x+16 x^2+\left (4 x+16 e^3 x-32 x^2+\left (4 x^2+16 e^3 x^2-32 x^3\right ) \log (4)\right ) \log (x)+\left (-2 x-8 e^3 x+16 x^2+\left (-4 x-4 x^2-16 e^3 x^2+32 x^3\right ) \log (4)+\left (-2 x^3-8 e^3 x^3+16 x^4\right ) \log ^2(4)\right ) \log ^2(x)\right )}{x+\left (-2 x-2 x^2 \log (4)\right ) \log (x)+\left (x+2 x^2 \log (4)+x^3 \log ^2(4)\right ) \log ^2(x)} \, dx\\ &=\int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (-4+\left (-2-8 e^3\right ) x+16 x^2+\left (4 x+16 e^3 x-32 x^2+\left (4 x^2+16 e^3 x^2-32 x^3\right ) \log (4)\right ) \log (x)+\left (-2 x-8 e^3 x+16 x^2+\left (-4 x-4 x^2-16 e^3 x^2+32 x^3\right ) \log (4)+\left (-2 x^3-8 e^3 x^3+16 x^4\right ) \log ^2(4)\right ) \log ^2(x)\right )}{x (1-\log (x)-x \log (4) \log (x))^2} \, dx\\ &=\int \left (\frac {2 \exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (-1-4 e^3+8 x^3 \log ^2(4)+x^2 \log (4) \left (16-\log (4)-4 e^3 \log (4)\right )+x \left (8-8 e^3 \log (4)-\log (16)\right )-\log (16)\right )}{(1+x \log (4))^2}-\frac {4 \exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (1+x^2 \log ^2(4)+x \log (64)\right )}{x (1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))^2}-\frac {8 \exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \log (4)}{(1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (-1-4 e^3+8 x^3 \log ^2(4)+x^2 \log (4) \left (16-\log (4)-4 e^3 \log (4)\right )+x \left (8-8 e^3 \log (4)-\log (16)\right )-\log (16)\right )}{(1+x \log (4))^2} \, dx-4 \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (1+x^2 \log ^2(4)+x \log (64)\right )}{x (1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))^2} \, dx-(8 \log (4)) \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{(1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))} \, dx\\ &=2 \int \left (\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \left (-1-4 e^3\right )+8 \exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) x-\frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \log (16)}{(1+x \log (4))^2}\right ) \, dx-4 \int \left (\frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{x (-1+\log (x)+x \log (4) \log (x))^2}+\frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \log (4)}{(1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))^2}\right ) \, dx-(8 \log (4)) \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{(1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))} \, dx\\ &=-\left (4 \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{x (-1+\log (x)+x \log (4) \log (x))^2} \, dx\right )+16 \int \exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) x \, dx-\left (2 \left (1+4 e^3\right )\right ) \int \exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right ) \, dx-(4 \log (4)) \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{(1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))^2} \, dx-(8 \log (4)) \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{(1+x \log (4))^2 (-1+\log (x)+x \log (4) \log (x))} \, dx-(2 \log (16)) \int \frac {\exp \left (\frac {2 \left (-e^6+\left (1+4 e^3\right ) x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}\right )}{(1+x \log (4))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 134.27, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {2 \left (-e^6+x+4 e^3 x-4 x^2+\left (2+e^6-x-4 e^3 x+4 x^2+\left (e^6 x-x^2-4 e^3 x^2+4 x^3\right ) \log (4)\right ) \log (x)\right )}{-1+(1+x \log (4)) \log (x)}} \left (-4-2 x-8 e^3 x+16 x^2+\left (4 x+16 e^3 x-32 x^2+\left (4 x^2+16 e^3 x^2-32 x^3\right ) \log (4)\right ) \log (x)+\left (-2 x-8 e^3 x+16 x^2+\left (-4 x-4 x^2-16 e^3 x^2+32 x^3\right ) \log (4)+\left (-2 x^3-8 e^3 x^3+16 x^4\right ) \log ^2(4)\right ) \log ^2(x)\right )}{x+\left (-2 x-2 x^2 \log (4)\right ) \log (x)+\left (x+2 x^2 \log (4)+x^3 \log ^2(4)\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.05, size = 80, normalized size = 2.42 \begin {gather*} e^{\left (-\frac {2 \, {\left (4 \, x^{2} - 4 \, x e^{3} - {\left (4 \, x^{2} - 4 \, x e^{3} + 2 \, {\left (4 \, x^{3} - 4 \, x^{2} e^{3} - x^{2} + x e^{6}\right )} \log \relax (2) - x + e^{6} + 2\right )} \log \relax (x) - x + e^{6}\right )}}{{\left (2 \, x \log \relax (2) + 1\right )} \log \relax (x) - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.44, size = 255, normalized size = 7.73 \begin {gather*} e^{\left (\frac {16 \, x^{3} \log \relax (2) \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} - \frac {16 \, x^{2} e^{3} \log \relax (2) \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} - \frac {4 \, x^{2} \log \relax (2) \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} + \frac {4 \, x e^{6} \log \relax (2) \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} + \frac {8 \, x^{2} \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} - \frac {8 \, x e^{3} \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} - \frac {8 \, x^{2}}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} + \frac {8 \, x e^{3}}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} - \frac {2 \, x \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} + \frac {2 \, e^{6} \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} + \frac {2 \, x}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} - \frac {2 \, e^{6}}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1} + \frac {4 \, \log \relax (x)}{2 \, x \log \relax (2) \log \relax (x) + \log \relax (x) - 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 99, normalized size = 3.00
method | result | size |
risch | \({\mathrm e}^{-\frac {2 \left (8 \ln \relax (x ) {\mathrm e}^{3} \ln \relax (2) x^{2}-8 \ln \relax (x ) \ln \relax (2) x^{3}-2 \ln \relax (x ) \ln \relax (2) {\mathrm e}^{6} x +2 x^{2} \ln \relax (2) \ln \relax (x )+4 x \,{\mathrm e}^{3} \ln \relax (x )-4 x^{2} \ln \relax (x )-\ln \relax (x ) {\mathrm e}^{6}+x \ln \relax (x )-4 x \,{\mathrm e}^{3}+4 x^{2}-2 \ln \relax (x )+{\mathrm e}^{6}-x \right )}{2 x \ln \relax (2) \ln \relax (x )+\ln \relax (x )-1}}\) | \(99\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.98, size = 37, normalized size = 1.12 \begin {gather*} e^{\left (8 \, x^{2} - 8 \, x e^{3} - 2 \, x + \frac {4 \, \log \relax (x)}{{\left (2 \, x \log \relax (2) + 1\right )} \log \relax (x) - 1} + 2 \, e^{6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.70, size = 138, normalized size = 4.18 \begin {gather*} x^{\frac {2\,\left ({\mathrm {e}}^6-x-4\,x\,{\mathrm {e}}^3-2\,x^2\,\ln \relax (2)+8\,x^3\,\ln \relax (2)+4\,x^2-8\,x^2\,{\mathrm {e}}^3\,\ln \relax (2)+2\,x\,{\mathrm {e}}^6\,\ln \relax (2)+2\right )}{\ln \relax (x)+2\,x\,\ln \relax (2)\,\ln \relax (x)-1}}\,{\mathrm {e}}^{\frac {2\,x}{\ln \relax (x)+2\,x\,\ln \relax (2)\,\ln \relax (x)-1}}\,{\mathrm {e}}^{-\frac {8\,x^2}{\ln \relax (x)+2\,x\,\ln \relax (2)\,\ln \relax (x)-1}}\,{\mathrm {e}}^{\frac {8\,x\,{\mathrm {e}}^3}{\ln \relax (x)+2\,x\,\ln \relax (2)\,\ln \relax (x)-1}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^6}{\ln \relax (x)+2\,x\,\ln \relax (2)\,\ln \relax (x)-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.84, size = 87, normalized size = 2.64 \begin {gather*} e^{\frac {2 \left (- 4 x^{2} + x + 4 x e^{3} + \left (4 x^{2} - 4 x e^{3} - x + \left (8 x^{3} - 8 x^{2} e^{3} - 2 x^{2} + 2 x e^{6}\right ) \log {\relax (2 )} + 2 + e^{6}\right ) \log {\relax (x )} - e^{6}\right )}{\left (2 x \log {\relax (2 )} + 1\right ) \log {\relax (x )} - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________