Optimal. Leaf size=22 \[ 4+\frac {5}{2} \left (-9+\frac {e+x}{256 x \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 14, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {12, 6741, 6742, 2353, 2306, 2309, 2178, 2302, 30} \begin {gather*} \frac {5 e}{512 x \log (x)}+\frac {5}{512 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{512} \int \frac {-5 e-5 x-5 e \log (x)}{x^2 \log ^2(x)} \, dx\\ &=\frac {1}{512} \int \frac {5 (-e-x-e \log (x))}{x^2 \log ^2(x)} \, dx\\ &=\frac {5}{512} \int \frac {-e-x-e \log (x)}{x^2 \log ^2(x)} \, dx\\ &=\frac {5}{512} \int \left (\frac {-e-x}{x^2 \log ^2(x)}-\frac {e}{x^2 \log (x)}\right ) \, dx\\ &=\frac {5}{512} \int \frac {-e-x}{x^2 \log ^2(x)} \, dx-\frac {1}{512} (5 e) \int \frac {1}{x^2 \log (x)} \, dx\\ &=\frac {5}{512} \int \left (-\frac {e}{x^2 \log ^2(x)}-\frac {1}{x \log ^2(x)}\right ) \, dx-\frac {1}{512} (5 e) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {5}{512} e \text {Ei}(-\log (x))-\frac {5}{512} \int \frac {1}{x \log ^2(x)} \, dx-\frac {1}{512} (5 e) \int \frac {1}{x^2 \log ^2(x)} \, dx\\ &=-\frac {5}{512} e \text {Ei}(-\log (x))+\frac {5 e}{512 x \log (x)}-\frac {5}{512} \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )+\frac {1}{512} (5 e) \int \frac {1}{x^2 \log (x)} \, dx\\ &=-\frac {5}{512} e \text {Ei}(-\log (x))+\frac {5}{512 \log (x)}+\frac {5 e}{512 x \log (x)}+\frac {1}{512} (5 e) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {5}{512 \log (x)}+\frac {5 e}{512 x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 14, normalized size = 0.64 \begin {gather*} \frac {5 (e+x)}{512 x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 13, normalized size = 0.59 \begin {gather*} \frac {5 \, {\left (x + e\right )}}{512 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 13, normalized size = 0.59 \begin {gather*} \frac {5 \, {\left (x + e\right )}}{512 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.64
method | result | size |
risch | \(\frac {\frac {5 x}{512}+\frac {5 \,{\mathrm e}}{512}}{x \ln \relax (x )}\) | \(14\) |
norman | \(\frac {\frac {5 x}{512}+\frac {5 \,{\mathrm e}}{512}}{x \ln \relax (x )}\) | \(17\) |
default | \(\frac {5 \,{\mathrm e} \expIntegralEi \left (1, \ln \relax (x )\right )}{512}-\frac {5 \,{\mathrm e} \left (-\frac {1}{x \ln \relax (x )}+\expIntegralEi \left (1, \ln \relax (x )\right )\right )}{512}+\frac {5}{512 \ln \relax (x )}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.36, size = 24, normalized size = 1.09 \begin {gather*} -\frac {5}{512} \, {\rm Ei}\left (-\log \relax (x)\right ) e + \frac {5}{512} \, e \Gamma \left (-1, \log \relax (x)\right ) + \frac {5}{512 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.95, size = 20, normalized size = 0.91 \begin {gather*} \frac {5\,x^2+5\,\mathrm {e}\,x}{512\,x^2\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.64 \begin {gather*} \frac {5 x + 5 e}{512 x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________