Optimal. Leaf size=31 \[ x \left (2-e^{\frac {1}{3+e^4-x+e^{e^x} x-x^2}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 106.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18+6 x-22 x^2-6 x^3+6 x^4+2 x^5+e^8 (2+2 x)+e^4 \left (12+8 x-8 x^2-4 x^3\right )+e^{2 e^x} \left (2 x^2+2 x^3\right )+e^{e^x} \left (12 x+8 x^2-8 x^3-4 x^4+e^4 \left (4 x+4 x^2\right )\right )+e^{\frac {1}{3+e^4-x+e^{e^x} x-x^2}} \left (-9-e^8+5 x+3 x^2-e^{2 e^x} x^2-2 x^3-x^4+e^4 \left (-6+2 x+2 x^2\right )+e^{e^x} \left (-5 x-2 e^4 x+2 x^2+e^x x^2+2 x^3\right )\right )}{9+e^8-6 x-5 x^2+e^{2 e^x} x^2+2 x^3+x^4+e^4 \left (6-2 x-2 x^2\right )+e^{e^x} \left (6 x+2 e^4 x-2 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18+6 x-22 x^2-6 x^3+6 x^4+2 x^5+e^8 (2+2 x)+e^4 \left (12+8 x-8 x^2-4 x^3\right )+e^{2 e^x} \left (2 x^2+2 x^3\right )+e^{e^x} \left (12 x+8 x^2-8 x^3-4 x^4+e^4 \left (4 x+4 x^2\right )\right )+e^{\frac {1}{3+e^4-x+e^{e^x} x-x^2}} \left (-9-e^8+5 x+3 x^2-e^{2 e^x} x^2-2 x^3-x^4+e^4 \left (-6+2 x+2 x^2\right )+e^{e^x} \left (-5 x-2 e^4 x+2 x^2+e^x x^2+2 x^3\right )\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx\\ &=\int \left (\frac {18}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {6 x}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}-\frac {22 x^2}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}-\frac {6 x^3}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {6 x^4}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {2 x^5}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {2 e^8 (1+x)}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {2 e^{2 e^x} x^2 (1+x)}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {4 e^4 (1+x) \left (3-x-x^2\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {4 e^{e^x} x (1+x) \left (3+e^4-x-x^2\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}+\frac {e^{\frac {1}{3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2}} \left (-9 \left (1+\frac {1}{9} e^4 \left (6+e^4\right )\right )+5 \left (1+\frac {2 e^4}{5}\right ) x-5 e^{e^x} \left (1+\frac {2 e^4}{5}\right ) x+2 e^{e^x} x^2-e^{2 e^x} x^2+e^{e^x+x} x^2+3 \left (1+\frac {2 e^4}{3}\right ) x^2-2 x^3+2 e^{e^x} x^3-x^4\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2}\right ) \, dx\\ &=2 \int \frac {x^5}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+2 \int \frac {e^{2 e^x} x^2 (1+x)}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+4 \int \frac {e^{e^x} x (1+x) \left (3+e^4-x-x^2\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+6 \int \frac {x}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx-6 \int \frac {x^3}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+6 \int \frac {x^4}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+18 \int \frac {1}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx-22 \int \frac {x^2}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+\left (4 e^4\right ) \int \frac {(1+x) \left (3-x-x^2\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+\left (2 e^8\right ) \int \frac {1+x}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx+\int \frac {e^{\frac {1}{3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2}} \left (-9 \left (1+\frac {1}{9} e^4 \left (6+e^4\right )\right )+5 \left (1+\frac {2 e^4}{5}\right ) x-5 e^{e^x} \left (1+\frac {2 e^4}{5}\right ) x+2 e^{e^x} x^2-e^{2 e^x} x^2+e^{e^x+x} x^2+3 \left (1+\frac {2 e^4}{3}\right ) x^2-2 x^3+2 e^{e^x} x^3-x^4\right )}{\left (3 \left (1+\frac {e^4}{3}\right )-x+e^{e^x} x-x^2\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 31, normalized size = 1.00 \begin {gather*} x \left (2-e^{\frac {1}{3+e^4-x+e^{e^x} x-x^2}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 2.04, size = 31, normalized size = 1.00 \begin {gather*} x^{2} - x e^{\left (-\frac {1}{x^{2} - x e^{\left (e^{x}\right )} + x - e^{4} - 3}\right )} + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 31, normalized size = 1.00
method | result | size |
risch | \(x^{2}-{\mathrm e}^{\frac {1}{x \,{\mathrm e}^{{\mathrm e}^{x}}+{\mathrm e}^{4}-x^{2}-x +3}} x +2 x\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} + 2 \, x - \int \frac {{\left (x^{4} + 2 \, x^{3} - x^{2} {\left (2 \, e^{4} + 3\right )} + x^{2} e^{\left (2 \, e^{x}\right )} - x {\left (2 \, e^{4} + 5\right )} - {\left (2 \, x^{3} + x^{2} e^{x} + 2 \, x^{2} - x {\left (2 \, e^{4} + 5\right )}\right )} e^{\left (e^{x}\right )} + e^{8} + 6 \, e^{4} + 9\right )} e^{\left (-\frac {1}{x^{2} - x e^{\left (e^{x}\right )} + x - e^{4} - 3}\right )}}{x^{4} + 2 \, x^{3} - x^{2} {\left (2 \, e^{4} + 5\right )} + x^{2} e^{\left (2 \, e^{x}\right )} - 2 \, x {\left (e^{4} + 3\right )} - 2 \, {\left (x^{3} + x^{2} - x {\left (e^{4} + 3\right )}\right )} e^{\left (e^{x}\right )} + e^{8} + 6 \, e^{4} + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.64, size = 27, normalized size = 0.87 \begin {gather*} x\,\left (x-{\mathrm {e}}^{\frac {1}{{\mathrm {e}}^4-x+x\,{\mathrm {e}}^{{\mathrm {e}}^x}-x^2+3}}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 16.02, size = 27, normalized size = 0.87 \begin {gather*} x^{2} - x e^{\frac {1}{- x^{2} + x e^{e^{x}} - x + 3 + e^{4}}} + 2 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________