Optimal. Leaf size=22 \[ x \left (x^2-\left (1+\log \left (-\frac {2}{5}+e^3\right )\right )^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 87, normalized size of antiderivative = 3.95, number of steps used = 3, number of rules used = 0, integrand size = 84, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} x^5-2 x^3-2 x^3 \log ^2\left (e^3-\frac {2}{5}\right )-4 x^3 \log \left (e^3-\frac {2}{5}\right )+6 x \log ^2\left (e^3-\frac {2}{5}\right )+x \left (1+\log ^4\left (e^3-\frac {2}{5}\right )+4 \log ^3\left (e^3-\frac {2}{5}\right )\right )+4 x \log \left (e^3-\frac {2}{5}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-2 x^3+x^5+x \left (1+4 \log ^3\left (-\frac {2}{5}+e^3\right )+\log ^4\left (-\frac {2}{5}+e^3\right )\right )+\log \left (-\frac {2}{5}+e^3\right ) \int \left (4-12 x^2\right ) \, dx+\log ^2\left (-\frac {2}{5}+e^3\right ) \int \left (6-6 x^2\right ) \, dx\\ &=-2 x^3+x^5+4 x \log \left (-\frac {2}{5}+e^3\right )-4 x^3 \log \left (-\frac {2}{5}+e^3\right )+6 x \log ^2\left (-\frac {2}{5}+e^3\right )-2 x^3 \log ^2\left (-\frac {2}{5}+e^3\right )+x \left (1+4 \log ^3\left (-\frac {2}{5}+e^3\right )+\log ^4\left (-\frac {2}{5}+e^3\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.00 \begin {gather*} x \left (x^2-\left (1+\log \left (-\frac {2}{5}+e^3\right )\right )^2\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 59, normalized size = 2.68 \begin {gather*} x^{5} + x \log \left (e^{3} - \frac {2}{5}\right )^{4} + 4 \, x \log \left (e^{3} - \frac {2}{5}\right )^{3} - 2 \, x^{3} - 2 \, {\left (x^{3} - 3 \, x\right )} \log \left (e^{3} - \frac {2}{5}\right )^{2} - 4 \, {\left (x^{3} - x\right )} \log \left (e^{3} - \frac {2}{5}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 59, normalized size = 2.68 \begin {gather*} x^{5} + x \log \left (e^{3} - \frac {2}{5}\right )^{4} + 4 \, x \log \left (e^{3} - \frac {2}{5}\right )^{3} - 2 \, x^{3} - 2 \, {\left (x^{3} - 3 \, x\right )} \log \left (e^{3} - \frac {2}{5}\right )^{2} - 4 \, {\left (x^{3} - x\right )} \log \left (e^{3} - \frac {2}{5}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 62, normalized size = 2.82
method | result | size |
default | \(\ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )^{4} x +4 \ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )^{3} x +\ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )^{2} \left (-2 x^{3}+6 x \right )+\ln \left ({\mathrm e}^{3}-\frac {2}{5}\right ) \left (-4 x^{3}+4 x \right )+x^{5}-2 x^{3}+x\) | \(62\) |
gosper | \(\left (\ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )+1-x \right ) x \left (\ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )^{3}+x \ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )^{2}-\ln \left ({\mathrm e}^{3}-\frac {2}{5}\right ) x^{2}-x^{3}+3 \ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )^{2}+2 x \ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )-x^{2}+3 \ln \left ({\mathrm e}^{3}-\frac {2}{5}\right )+x +1\right )\) | \(76\) |
norman | \(x^{5}+\left (-2 \ln \relax (5)^{2}+4 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right )-2 \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2}+4 \ln \relax (5)-4 \ln \left (5 \,{\mathrm e}^{3}-2\right )-2\right ) x^{3}+\left (1+\ln \relax (5)^{4}-4 \ln \relax (5)^{3}-4 \ln \relax (5)+6 \ln \relax (5)^{2}-12 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right )+6 \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2}+12 \ln \relax (5)^{2} \ln \left (5 \,{\mathrm e}^{3}-2\right )-12 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2}-4 \ln \relax (5)^{3} \ln \left (5 \,{\mathrm e}^{3}-2\right )+6 \ln \relax (5)^{2} \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2}-4 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right )^{3}+4 \ln \left (5 \,{\mathrm e}^{3}-2\right )+4 \ln \left (5 \,{\mathrm e}^{3}-2\right )^{3}+\ln \left (5 \,{\mathrm e}^{3}-2\right )^{4}\right ) x\) | \(194\) |
risch | \(x \ln \relax (5)^{4}-4 \ln \relax (5)^{3} \ln \left (5 \,{\mathrm e}^{3}-2\right ) x +6 \ln \relax (5)^{2} \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2} x -2 x^{3} \ln \relax (5)^{2}-4 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right )^{3} x +4 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right ) x^{3}+\ln \left (5 \,{\mathrm e}^{3}-2\right )^{4} x -2 \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2} x^{3}+x^{5}-4 \ln \relax (5)^{3} x +12 \ln \relax (5)^{2} \ln \left (5 \,{\mathrm e}^{3}-2\right ) x -12 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2} x +4 x^{3} \ln \relax (5)+4 \ln \left (5 \,{\mathrm e}^{3}-2\right )^{3} x -4 x^{3} \ln \left (5 \,{\mathrm e}^{3}-2\right )+6 x \ln \relax (5)^{2}-12 \ln \relax (5) \ln \left (5 \,{\mathrm e}^{3}-2\right ) x +6 \ln \left (5 \,{\mathrm e}^{3}-2\right )^{2} x -2 x^{3}-4 x \ln \relax (5)+4 x \ln \left (5 \,{\mathrm e}^{3}-2\right )+x\) | \(221\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.34, size = 59, normalized size = 2.68 \begin {gather*} x^{5} + x \log \left (e^{3} - \frac {2}{5}\right )^{4} + 4 \, x \log \left (e^{3} - \frac {2}{5}\right )^{3} - 2 \, x^{3} - 2 \, {\left (x^{3} - 3 \, x\right )} \log \left (e^{3} - \frac {2}{5}\right )^{2} - 4 \, {\left (x^{3} - x\right )} \log \left (e^{3} - \frac {2}{5}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.90, size = 63, normalized size = 2.86 \begin {gather*} x^5+\left (-4\,\ln \left ({\mathrm {e}}^3-\frac {2}{5}\right )-2\,{\ln \left ({\mathrm {e}}^3-\frac {2}{5}\right )}^2-2\right )\,x^3+\left (4\,\ln \left ({\mathrm {e}}^3-\frac {2}{5}\right )+6\,{\ln \left ({\mathrm {e}}^3-\frac {2}{5}\right )}^2+4\,{\ln \left ({\mathrm {e}}^3-\frac {2}{5}\right )}^3+{\ln \left ({\mathrm {e}}^3-\frac {2}{5}\right )}^4+1\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.07, size = 78, normalized size = 3.55 \begin {gather*} x^{5} + x^{3} \left (- 2 \log {\left (- \frac {2}{5} + e^{3} \right )}^{2} - 4 \log {\left (- \frac {2}{5} + e^{3} \right )} - 2\right ) + x \left (1 + 4 \log {\left (- \frac {2}{5} + e^{3} \right )} + 6 \log {\left (- \frac {2}{5} + e^{3} \right )}^{2} + \log {\left (- \frac {2}{5} + e^{3} \right )}^{4} + 4 \log {\left (- \frac {2}{5} + e^{3} \right )}^{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________