Optimal. Leaf size=31 \[ \log (2)-\frac {x^2}{4 (5-x)^2 \log ^2\left (\frac {-3+2 x}{-3+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {15 x^2-3 x^3+\left (45 x-45 x^2+10 x^3\right ) \log \left (\frac {-3+2 x}{-3+x}\right )}{\left (-2250+3600 x-2120 x^2+588 x^3-78 x^4+4 x^5\right ) \log ^3\left (\frac {-3+2 x}{-3+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (\frac {3 (-5+x) x}{9-9 x+2 x^2}-5 \log \left (\frac {-3+2 x}{-3+x}\right )\right )}{2 (5-x)^3 \log ^3\left (\frac {-3+2 x}{-3+x}\right )} \, dx\\ &=\frac {1}{2} \int \frac {x \left (\frac {3 (-5+x) x}{9-9 x+2 x^2}-5 \log \left (\frac {-3+2 x}{-3+x}\right )\right )}{(5-x)^3 \log ^3\left (\frac {-3+2 x}{-3+x}\right )} \, dx\\ &=\frac {1}{2} \int \left (-\frac {3 x^2}{(-5+x)^2 (-3+x) (-3+2 x) \log ^3\left (\frac {-3+2 x}{-3+x}\right )}+\frac {5 x}{(-5+x)^3 \log ^2\left (\frac {-3+2 x}{-3+x}\right )}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {x^2}{(-5+x)^2 (-3+x) (-3+2 x) \log ^3\left (\frac {-3+2 x}{-3+x}\right )} \, dx\right )+\frac {5}{2} \int \frac {x}{(-5+x)^3 \log ^2\left (\frac {-3+2 x}{-3+x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 26, normalized size = 0.84 \begin {gather*} -\frac {x^2}{4 (-5+x)^2 \log ^2\left (\frac {-3+2 x}{-3+x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 29, normalized size = 0.94 \begin {gather*} -\frac {x^{2}}{4 \, {\left (x^{2} - 10 \, x + 25\right )} \log \left (\frac {2 \, x - 3}{x - 3}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 102, normalized size = 3.29 \begin {gather*} -\frac {9 \, {\left (\frac {{\left (2 \, x - 3\right )}^{2}}{{\left (x - 3\right )}^{2}} - \frac {2 \, {\left (2 \, x - 3\right )}}{x - 3} + 1\right )}}{4 \, {\left (\frac {4 \, {\left (2 \, x - 3\right )}^{2} \log \left (\frac {2 \, x - 3}{x - 3}\right )^{2}}{{\left (x - 3\right )}^{2}} - \frac {28 \, {\left (2 \, x - 3\right )} \log \left (\frac {2 \, x - 3}{x - 3}\right )^{2}}{x - 3} + 49 \, \log \left (\frac {2 \, x - 3}{x - 3}\right )^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 25, normalized size = 0.81
method | result | size |
norman | \(-\frac {x^{2}}{4 \left (x -5\right )^{2} \ln \left (\frac {2 x -3}{x -3}\right )^{2}}\) | \(25\) |
risch | \(-\frac {x^{2}}{4 \left (x^{2}-10 x +25\right ) \ln \left (\frac {2 x -3}{x -3}\right )^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 60, normalized size = 1.94 \begin {gather*} -\frac {x^{2}}{4 \, {\left ({\left (x^{2} - 10 \, x + 25\right )} \log \left (2 \, x - 3\right )^{2} - 2 \, {\left (x^{2} - 10 \, x + 25\right )} \log \left (2 \, x - 3\right ) \log \left (x - 3\right ) + {\left (x^{2} - 10 \, x + 25\right )} \log \left (x - 3\right )^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 50, normalized size = 1.61 \begin {gather*} \frac {875}{6\,{\left (x-5\right )}^2}-\frac {175\,x}{3\,{\left (x-5\right )}^2}+\frac {35\,x^2}{6\,{\left (x-5\right )}^2}-\frac {x^2}{4\,{\ln \left (\frac {2\,x-3}{x-3}\right )}^2\,{\left (x-5\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 26, normalized size = 0.84 \begin {gather*} - \frac {x^{2}}{\left (4 x^{2} - 40 x + 100\right ) \log {\left (\frac {2 x - 3}{x - 3} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________