Optimal. Leaf size=20 \[ e^x+e^{(4+\log (28 x))^2}+\log (3-x) \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 25, normalized size of antiderivative = 1.25, number of steps used = 5, number of rules used = 4, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {1593, 6688, 2194, 2288} \begin {gather*} 377801998336 x^8 e^{\log ^2(28 x)+16}+e^x+\log (3-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2194
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+e^x \left (-3 x+x^2\right )+377801998336 e^{16+\log ^2(28 x)} x^8 (-24+8 x+(-6+2 x) \log (28 x))}{(-3+x) x} \, dx\\ &=\int \left (e^x+\frac {1}{-3+x}+755603996672 e^{16+\log ^2(28 x)} x^7 (4+\log (28 x))\right ) \, dx\\ &=\log (3-x)+755603996672 \int e^{16+\log ^2(28 x)} x^7 (4+\log (28 x)) \, dx+\int e^x \, dx\\ &=e^x+377801998336 e^{16+\log ^2(28 x)} x^8+\log (3-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 23, normalized size = 1.15 \begin {gather*} e^x+377801998336 e^{16+\log ^2(28 x)} x^8+\log (-3+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 22, normalized size = 1.10 \begin {gather*} e^{\left (\log \left (28 \, x\right )^{2} + 8 \, \log \left (28 \, x\right ) + 16\right )} + e^{x} + \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 1.05 \begin {gather*} 377801998336 \, x^{8} e^{\left (\log \left (28 \, x\right )^{2} + 16\right )} + e^{x} + \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 1.10
method | result | size |
risch | \(\ln \left (x -3\right )+377801998336 x^{8} {\mathrm e}^{\ln \left (28 x \right )^{2}+16}+{\mathrm e}^{x}\) | \(22\) |
default | \(\ln \left (x -3\right )+{\mathrm e}^{\ln \left (28 x \right )^{2}+8 \ln \left (28 x \right )+16}+{\mathrm e}^{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 5764801 \cdot 2^{4 \, \log \relax (7) + 16} x^{8} e^{\left (\log \relax (7)^{2} + 4 \, \log \relax (2)^{2} + 2 \, \log \relax (7) \log \relax (x) + 4 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2} + 16\right )} + 3 \, e^{3} E_{1}\left (-x + 3\right ) + \int \frac {x e^{x}}{x - 3}\,{d x} + \log \left (x - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.09, size = 30, normalized size = 1.50 \begin {gather*} \ln \left (x-3\right )+{\mathrm {e}}^x+377801998336\,x^{2\,\ln \left (28\right )}\,x^8\,{\mathrm {e}}^{{\ln \left (28\right )}^2}\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 22, normalized size = 1.10 \begin {gather*} 377801998336 x^{8} e^{\log {\left (28 x \right )}^{2} + 16} + e^{x} + \log {\left (x - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________