Optimal. Leaf size=23 \[ \log (x)-\log \left (\frac {2}{\left (-2+\frac {5}{1+x}\right ) \log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 18, normalized size of antiderivative = 0.78, number of steps used = 7, number of rules used = 5, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {1594, 6728, 1628, 2302, 29} \begin {gather*} \log (3-2 x)+\log (x)-\log (x+1)+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 1594
Rule 1628
Rule 2302
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3-x+2 x^2+\left (-3+4 x+2 x^2\right ) \log (x)}{x \left (-3-x+2 x^2\right ) \log (x)} \, dx\\ &=\int \left (\frac {-3+4 x+2 x^2}{x \left (-3-x+2 x^2\right )}+\frac {1}{x \log (x)}\right ) \, dx\\ &=\int \frac {-3+4 x+2 x^2}{x \left (-3-x+2 x^2\right )} \, dx+\int \frac {1}{x \log (x)} \, dx\\ &=\int \left (\frac {1}{-1-x}+\frac {1}{x}+\frac {2}{-3+2 x}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=\log (3-2 x)+\log (x)-\log (1+x)+\log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 18, normalized size = 0.78 \begin {gather*} \log (3-2 x)+\log (x)-\log (1+x)+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 20, normalized size = 0.87 \begin {gather*} \log \left (2 \, x^{2} - 3 \, x\right ) - \log \left (x + 1\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 18, normalized size = 0.78 \begin {gather*} \log \left (2 \, x - 3\right ) - \log \left (x + 1\right ) + \log \relax (x) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 19, normalized size = 0.83
method | result | size |
default | \(\ln \left (\ln \relax (x )\right )-\ln \left (x +1\right )+\ln \left (2 x -3\right )+\ln \relax (x )\) | \(19\) |
norman | \(\ln \left (\ln \relax (x )\right )-\ln \left (x +1\right )+\ln \left (2 x -3\right )+\ln \relax (x )\) | \(19\) |
risch | \(-\ln \left (x +1\right )+\ln \left (2 x^{2}-3 x \right )+\ln \left (\ln \relax (x )\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 18, normalized size = 0.78 \begin {gather*} \log \left (2 \, x - 3\right ) - \log \left (x + 1\right ) + \log \relax (x) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.04, size = 16, normalized size = 0.70 \begin {gather*} \ln \left (x-\frac {3}{2}\right )-\ln \left (x+1\right )+\ln \left (\ln \relax (x)\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.83 \begin {gather*} - \log {\left (x + 1 \right )} + \log {\left (2 x^{2} - 3 x \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________