Optimal. Leaf size=21 \[ \log \left (-e^x+\frac {2}{x}\right )-\log \left (64 x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+e^x \left (-2 x+x^2\right )}{-2 x+e^x x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-2+x}{x}+\frac {2 (1+x)}{x \left (-2+e^x x\right )}\right ) \, dx\\ &=2 \int \frac {1+x}{x \left (-2+e^x x\right )} \, dx+\int \frac {-2+x}{x} \, dx\\ &=2 \int \left (\frac {1}{-2+e^x x}+\frac {1}{x \left (-2+e^x x\right )}\right ) \, dx+\int \left (1-\frac {2}{x}\right ) \, dx\\ &=x-2 \log (x)+2 \int \frac {1}{-2+e^x x} \, dx+2 \int \frac {1}{x \left (-2+e^x x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 14, normalized size = 0.67 \begin {gather*} -3 \log (x)+\log \left (2-e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 16, normalized size = 0.76 \begin {gather*} -2 \, \log \relax (x) + \log \left (\frac {x e^{x} - 2}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 12, normalized size = 0.57 \begin {gather*} \log \left (x e^{x} - 2\right ) - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 0.62
method | result | size |
norman | \(-3 \ln \relax (x )+\ln \left ({\mathrm e}^{x} x -2\right )\) | \(13\) |
risch | \(-2 \ln \relax (x )+\ln \left ({\mathrm e}^{x}-\frac {2}{x}\right )\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 16, normalized size = 0.76 \begin {gather*} -2 \, \log \relax (x) + \log \left (\frac {x e^{x} - 2}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.99, size = 12, normalized size = 0.57 \begin {gather*} \ln \left (x\,{\mathrm {e}}^x-2\right )-3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 12, normalized size = 0.57 \begin {gather*} - 2 \log {\relax (x )} + \log {\left (e^{x} - \frac {2}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________