Optimal. Leaf size=22 \[ -5+\log ^2\left (\left (-2-\frac {5 x}{4}+\log ^2(4)-\log (x)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 27, normalized size of antiderivative = 1.23, number of steps used = 4, number of rules used = 6, integrand size = 80, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {6, 6742, 6688, 12, 6684, 6686} \begin {gather*} \log ^2\left (\frac {1}{16} \left (5 x+4 \log (x)+4 \left (2-\log ^2(4)\right )\right )^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 6684
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(16+20 x) \log \left (\frac {1}{16} \left (64+80 x+25 x^2+(-64-40 x) \log ^2(4)+16 \log ^4(4)+\left (64+40 x-32 \log ^2(4)\right ) \log (x)+16 \log ^2(x)\right )\right )}{5 x^2+x \left (8-4 \log ^2(4)\right )+4 x \log (x)} \, dx\\ &=\int \frac {4 (4+5 x) \log \left (\frac {1}{16} \left (5 x+8 \left (1-\frac {\log ^2(4)}{2}\right )+4 \log (x)\right )^2\right )}{x \left (5 x+8 \left (1-\frac {\log ^2(4)}{2}\right )+4 \log (x)\right )} \, dx\\ &=4 \int \frac {(4+5 x) \log \left (\frac {1}{16} \left (5 x+8 \left (1-\frac {\log ^2(4)}{2}\right )+4 \log (x)\right )^2\right )}{x \left (5 x+8 \left (1-\frac {\log ^2(4)}{2}\right )+4 \log (x)\right )} \, dx\\ &=\log ^2\left (\frac {1}{16} \left (5 x+4 \left (2-\log ^2(4)\right )+4 \log (x)\right )^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.09 \begin {gather*} \log ^2\left (\frac {1}{16} \left (8+5 x-4 \log ^2(4)+4 \log (x)\right )^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.05, size = 49, normalized size = 2.23 \begin {gather*} \log \left (16 \, \log \relax (2)^{4} - 2 \, {\left (5 \, x + 8\right )} \log \relax (2)^{2} + \frac {25}{16} \, x^{2} - \frac {1}{2} \, {\left (16 \, \log \relax (2)^{2} - 5 \, x - 8\right )} \log \relax (x) + \log \relax (x)^{2} + 5 \, x + 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 76, normalized size = 3.45 \begin {gather*} \log \left (256 \, \log \relax (2)^{4} - 160 \, x \log \relax (2)^{2} - 128 \, \log \relax (2)^{2} \log \relax (x) + 25 \, x^{2} - 256 \, \log \relax (2)^{2} + 40 \, x \log \relax (x) + 16 \, \log \relax (x)^{2} + 80 \, x + 64 \, \log \relax (x) + 64\right )^{2} - 16 \, \log \relax (2) \log \left (-16 \, \log \relax (2)^{2} + 5 \, x + 4 \, \log \relax (x) + 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.44, size = 50, normalized size = 2.27
method | result | size |
norman | \(\ln \left (\ln \relax (x )^{2}+\frac {\left (-128 \ln \relax (2)^{2}+40 x +64\right ) \ln \relax (x )}{16}+16 \ln \relax (2)^{4}+\frac {\left (-40 x -64\right ) \ln \relax (2)^{2}}{4}+\frac {25 x^{2}}{16}+5 x +4\right )^{2}\) | \(50\) |
default | \(\ln \left (16 \ln \relax (x )^{2}-128 \ln \relax (x ) \ln \relax (2)^{2}+40 x \ln \relax (x )+64 \ln \relax (x )+256 \ln \relax (2)^{4}-160 x \ln \relax (2)^{2}-256 \ln \relax (2)^{2}+25 x^{2}+80 x +64\right )^{2}-16 \ln \relax (2) \ln \left (16 \ln \relax (2)^{2}-4 \ln \relax (x )-5 x -8\right )\) | \(77\) |
risch | \(4 \ln \left (\ln \relax (2)^{2}-\frac {5 x}{16}-\frac {\ln \relax (x )}{4}-\frac {1}{2}\right )^{2}-2 \left (i \pi \mathrm {csgn}\left (i \left (\ln \relax (2)^{2}-\frac {5 x}{16}-\frac {\ln \relax (x )}{4}-\frac {1}{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (\ln \relax (2)^{2}-\frac {5 x}{16}-\frac {\ln \relax (x )}{4}-\frac {1}{2}\right )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i \left (\ln \relax (2)^{2}-\frac {5 x}{16}-\frac {\ln \relax (x )}{4}-\frac {1}{2}\right )\right ) \mathrm {csgn}\left (i \left (\ln \relax (2)^{2}-\frac {5 x}{16}-\frac {\ln \relax (x )}{4}-\frac {1}{2}\right )^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (\ln \relax (2)^{2}-\frac {5 x}{16}-\frac {\ln \relax (x )}{4}-\frac {1}{2}\right )^{2}\right )^{3}+8 \ln \relax (2)\right ) \ln \left (-4 \ln \relax (2)^{2}+\ln \relax (x )+\frac {5 x}{4}+2\right )\) | \(150\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 86, normalized size = 3.91 \begin {gather*} 4 \, \log \left (16 \, \log \relax (2)^{4} - 2 \, {\left (5 \, x + 8\right )} \log \relax (2)^{2} + \frac {25}{16} \, x^{2} - \frac {1}{2} \, {\left (16 \, \log \relax (2)^{2} - 5 \, x - 8\right )} \log \relax (x) + \log \relax (x)^{2} + 5 \, x + 4\right ) \log \left (-16 \, \log \relax (2)^{2} + 5 \, x + 4 \, \log \relax (x) + 8\right ) - 4 \, \log \left (-16 \, \log \relax (2)^{2} + 5 \, x + 4 \, \log \relax (x) + 8\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.81, size = 49, normalized size = 2.23 \begin {gather*} {\ln \left (5\,x+{\ln \relax (x)}^2-\frac {{\ln \relax (2)}^2\,\left (40\,x+64\right )}{4}+\frac {\ln \relax (x)\,\left (40\,x-128\,{\ln \relax (2)}^2+64\right )}{16}+16\,{\ln \relax (2)}^4+\frac {25\,x^2}{16}+4\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 54, normalized size = 2.45 \begin {gather*} \log {\left (\frac {25 x^{2}}{16} + 5 x + \left (- 10 x - 16\right ) \log {\relax (2 )}^{2} + \left (\frac {5 x}{2} - 8 \log {\relax (2 )}^{2} + 4\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 16 \log {\relax (2 )}^{4} + 4 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________