Optimal. Leaf size=22 \[ 2-\frac {e^{\frac {e^4}{x}}}{5+x}-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 21, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 4, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {1594, 27, 6742, 2288} \begin {gather*} -\frac {e^{\frac {e^4}{x}}}{x+5}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25 x-10 x^2-x^3+e^{\frac {e^4}{x}} \left (x^2+e^4 (5+x)\right )}{x^2 \left (25+10 x+x^2\right )} \, dx\\ &=\int \frac {-25 x-10 x^2-x^3+e^{\frac {e^4}{x}} \left (x^2+e^4 (5+x)\right )}{x^2 (5+x)^2} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {e^{\frac {e^4}{x}} \left (5 e^4+e^4 x+x^2\right )}{x^2 (5+x)^2}\right ) \, dx\\ &=-\log (x)+\int \frac {e^{\frac {e^4}{x}} \left (5 e^4+e^4 x+x^2\right )}{x^2 (5+x)^2} \, dx\\ &=-\frac {e^{\frac {e^4}{x}}}{5+x}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 21, normalized size = 0.95 \begin {gather*} -\frac {e^{\frac {e^4}{x}}}{5+x}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 21, normalized size = 0.95 \begin {gather*} -\frac {{\left (x + 5\right )} \log \relax (x) + e^{\left (\frac {e^{4}}{x}\right )}}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 54, normalized size = 2.45 \begin {gather*} \frac {{\left (e^{8} \log \left (\frac {e^{4}}{x}\right ) + \frac {5 \, e^{8} \log \left (\frac {e^{4}}{x}\right )}{x} - \frac {e^{\left (\frac {e^{4}}{x} + 8\right )}}{x}\right )} e^{\left (-4\right )}}{\frac {5 \, e^{4}}{x} + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 20, normalized size = 0.91
method | result | size |
norman | \(-\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}}}{5+x}-\ln \relax (x )\) | \(20\) |
risch | \(-\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}}}{5+x}-\ln \relax (x )\) | \(20\) |
derivativedivides | \(-{\mathrm e}^{4} \left ({\mathrm e}^{8} \left (-\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}} {\mathrm e}^{-8}}{5 \left ({\mathrm e}^{4}+\frac {5 \,{\mathrm e}^{4}}{x}\right )}-\frac {{\mathrm e}^{-8} {\mathrm e}^{-\frac {{\mathrm e}^{4}}{5}} \expIntegralEi \left (1, -\frac {{\mathrm e}^{4}}{5}-\frac {{\mathrm e}^{4}}{x}\right )}{25}\right )+{\mathrm e}^{8} \left (\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}} {\mathrm e}^{-4}}{25 \,{\mathrm e}^{4}+\frac {125 \,{\mathrm e}^{4}}{x}}+\frac {\left ({\mathrm e}^{4}-5\right ) {\mathrm e}^{-8} {\mathrm e}^{-\frac {{\mathrm e}^{4}}{5}} \expIntegralEi \left (1, -\frac {{\mathrm e}^{4}}{5}-\frac {{\mathrm e}^{4}}{x}\right )}{125}\right )-{\mathrm e}^{-4} \ln \left (\frac {{\mathrm e}^{4}}{x}\right )+5 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}} {\mathrm e}^{-8}}{25}-\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}}}{125 \left ({\mathrm e}^{4}+\frac {5 \,{\mathrm e}^{4}}{x}\right )}-\frac {{\mathrm e}^{-4} \left ({\mathrm e}^{4}-10\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{5}} \expIntegralEi \left (1, -\frac {{\mathrm e}^{4}}{5}-\frac {{\mathrm e}^{4}}{x}\right )}{625}\right )\right )\) | \(199\) |
default | \(-{\mathrm e}^{4} \left ({\mathrm e}^{8} \left (-\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}} {\mathrm e}^{-8}}{5 \left ({\mathrm e}^{4}+\frac {5 \,{\mathrm e}^{4}}{x}\right )}-\frac {{\mathrm e}^{-8} {\mathrm e}^{-\frac {{\mathrm e}^{4}}{5}} \expIntegralEi \left (1, -\frac {{\mathrm e}^{4}}{5}-\frac {{\mathrm e}^{4}}{x}\right )}{25}\right )+{\mathrm e}^{8} \left (\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}} {\mathrm e}^{-4}}{25 \,{\mathrm e}^{4}+\frac {125 \,{\mathrm e}^{4}}{x}}+\frac {\left ({\mathrm e}^{4}-5\right ) {\mathrm e}^{-8} {\mathrm e}^{-\frac {{\mathrm e}^{4}}{5}} \expIntegralEi \left (1, -\frac {{\mathrm e}^{4}}{5}-\frac {{\mathrm e}^{4}}{x}\right )}{125}\right )-{\mathrm e}^{-4} \ln \left (\frac {{\mathrm e}^{4}}{x}\right )+5 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}} {\mathrm e}^{-8}}{25}-\frac {{\mathrm e}^{\frac {{\mathrm e}^{4}}{x}}}{125 \left ({\mathrm e}^{4}+\frac {5 \,{\mathrm e}^{4}}{x}\right )}-\frac {{\mathrm e}^{-4} \left ({\mathrm e}^{4}-10\right ) {\mathrm e}^{-\frac {{\mathrm e}^{4}}{5}} \expIntegralEi \left (1, -\frac {{\mathrm e}^{4}}{5}-\frac {{\mathrm e}^{4}}{x}\right )}{625}\right )\right )\) | \(199\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.86 \begin {gather*} -\frac {e^{\left (\frac {e^{4}}{x}\right )}}{x + 5} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.92, size = 19, normalized size = 0.86 \begin {gather*} -\ln \relax (x)-\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x}}}{x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 14, normalized size = 0.64 \begin {gather*} - \log {\relax (x )} - \frac {e^{\frac {e^{4}}{x}}}{x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________