Optimal. Leaf size=26 \[ \left (5+\frac {e^{2 x}}{2}\right ) \left (5+x+\frac {1}{\log (i \pi +\log (2))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 47, normalized size of antiderivative = 1.81, number of steps used = 6, number of rules used = 3, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.068, Rules used = {12, 2194, 2176} \begin {gather*} 5 x-\frac {e^{2 x}}{4}+\frac {1}{4} e^{2 x} (2 x+11)+\frac {e^{2 x}}{2 \log (\log (2)+i \pi )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^{2 x}+\left (5+\frac {1}{16} e^{2 x} (88+16 x)\right ) \log (i \pi +\log (2))\right ) \, dx}{\log (i \pi +\log (2))}\\ &=\frac {\int e^{2 x} \, dx}{\log (i \pi +\log (2))}+\int \left (5+\frac {1}{16} e^{2 x} (88+16 x)\right ) \, dx\\ &=5 x+\frac {e^{2 x}}{2 \log (i \pi +\log (2))}+\frac {1}{16} \int e^{2 x} (88+16 x) \, dx\\ &=5 x+\frac {1}{4} e^{2 x} (11+2 x)+\frac {e^{2 x}}{2 \log (i \pi +\log (2))}-\frac {1}{2} \int e^{2 x} \, dx\\ &=-\frac {e^{2 x}}{4}+5 x+\frac {1}{4} e^{2 x} (11+2 x)+\frac {e^{2 x}}{2 \log (i \pi +\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 27, normalized size = 1.04 \begin {gather*} 5 x+\frac {1}{2} e^{2 x} \left (5+x+\frac {1}{\log (i \pi +\log (2))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 48, normalized size = 1.85 \begin {gather*} \frac {{\left (8 \, {\left (x + 5\right )} e^{\left (2 \, x - 4 \, \log \relax (2)\right )} + 5 \, x\right )} \log \left (i \, \pi + \log \relax (2)\right ) + 8 \, e^{\left (2 \, x - 4 \, \log \relax (2)\right )}}{\log \left (i \, \pi + \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 48, normalized size = 1.85 \begin {gather*} \frac {{\left (8 \, {\left (x + 5\right )} e^{\left (2 \, x - 4 \, \log \relax (2)\right )} + 5 \, x\right )} \log \left (i \, \pi + \log \relax (2)\right ) + 8 \, e^{\left (2 \, x - 4 \, \log \relax (2)\right )}}{\log \left (i \, \pi + \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 50, normalized size = 1.92
method | result | size |
norman | \(5 x +\frac {x \,{\mathrm e}^{2 x}}{2}+\frac {\left (1+5 \ln \left (\ln \relax (2)+i \pi \right )\right ) {\mathrm e}^{2 x}}{2 \ln \left (\ln \relax (2)+i \pi \right )}\) | \(50\) |
risch | \(5 x +\frac {\left (8 \ln \left (i \left (-i \ln \relax (2)+\pi \right )\right ) x +40 \ln \left (i \left (-i \ln \relax (2)+\pi \right )\right )+8\right ) {\mathrm e}^{2 x}}{16 \ln \left (i \left (-i \ln \relax (2)+\pi \right )\right )}\) | \(53\) |
default | \(\frac {\frac {{\mathrm e}^{2 x} \ln \left (\ln \relax (2)+i \pi \right ) x}{2}+\frac {5 \,{\mathrm e}^{2 x} \ln \left (\ln \relax (2)+i \pi \right )}{2}+5 \ln \left (\ln \relax (2)+i \pi \right ) x +\frac {{\mathrm e}^{2 x}}{2}}{\ln \left (\ln \relax (2)+i \pi \right )}\) | \(74\) |
derivativedivides | \(\frac {\ln \relax (2) \ln \left (\ln \relax (2)+i \pi \right ) {\mathrm e}^{2 x}+\frac {\ln \left (\ln \relax (2)+i \pi \right ) {\mathrm e}^{2 x} \left (x -2 \ln \relax (2)\right )}{2}+\frac {5 \,{\mathrm e}^{2 x} \ln \left (\ln \relax (2)+i \pi \right )}{2}+5 \ln \left (\ln \relax (2)+i \pi \right ) \left (x -2 \ln \relax (2)\right )+\frac {{\mathrm e}^{2 x}}{2}}{\ln \left (\ln \relax (2)+i \pi \right )}\) | \(105\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 36, normalized size = 1.38 \begin {gather*} \frac {{\left ({\left (x + 5\right )} e^{\left (2 \, x\right )} + 10 \, x\right )} \log \left (i \, \pi + \log \relax (2)\right ) + e^{\left (2 \, x\right )}}{2 \, \log \left (i \, \pi + \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 33, normalized size = 1.27 \begin {gather*} 5\,x+\frac {5\,{\mathrm {e}}^{2\,x}}{2}+\frac {x\,{\mathrm {e}}^{2\,x}}{2}+\frac {{\mathrm {e}}^{2\,x}}{2\,\ln \left (\ln \relax (2)+\Pi \,1{}\mathrm {i}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 39, normalized size = 1.50 \begin {gather*} 5 x + \frac {\left (x \log {\left (\log {\relax (2 )} + i \pi \right )} + 1 + 5 \log {\left (\log {\relax (2 )} + i \pi \right )}\right ) e^{2 x}}{2 \log {\left (\log {\relax (2 )} + i \pi \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________