Optimal. Leaf size=21 \[ \frac {\log ^2(5)}{x^2 (1+x+\log ((-3-x) x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-9-13 x-3 x^2\right ) \log ^2(5)+(-6-2 x) \log ^2(5) \log \left (-3 x-x^2\right )}{3 x^3+7 x^4+5 x^5+x^6+\left (6 x^3+8 x^4+2 x^5\right ) \log \left (-3 x-x^2\right )+\left (3 x^3+x^4\right ) \log ^2\left (-3 x-x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log ^2(5) \left (-9-13 x-3 x^2-2 (3+x) \log (-x (3+x))\right )}{x^3 (3+x) (1+x+\log (-x (3+x)))^2} \, dx\\ &=\log ^2(5) \int \frac {-9-13 x-3 x^2-2 (3+x) \log (-x (3+x))}{x^3 (3+x) (1+x+\log (-x (3+x)))^2} \, dx\\ &=\log ^2(5) \int \left (\frac {-3-5 x-x^2}{x^3 (3+x) (1+x+\log (-x (3+x)))^2}-\frac {2}{x^3 (1+x+\log (-x (3+x)))}\right ) \, dx\\ &=\log ^2(5) \int \frac {-3-5 x-x^2}{x^3 (3+x) (1+x+\log (-x (3+x)))^2} \, dx-\left (2 \log ^2(5)\right ) \int \frac {1}{x^3 (1+x+\log (-x (3+x)))} \, dx\\ &=\log ^2(5) \int \left (-\frac {1}{x^3 (1+x+\log (-x (3+x)))^2}-\frac {4}{3 x^2 (1+x+\log (-x (3+x)))^2}+\frac {1}{9 x (1+x+\log (-x (3+x)))^2}-\frac {1}{9 (3+x) (1+x+\log (-x (3+x)))^2}\right ) \, dx-\left (2 \log ^2(5)\right ) \int \frac {1}{x^3 (1+x+\log (-x (3+x)))} \, dx\\ &=\frac {1}{9} \log ^2(5) \int \frac {1}{x (1+x+\log (-x (3+x)))^2} \, dx-\frac {1}{9} \log ^2(5) \int \frac {1}{(3+x) (1+x+\log (-x (3+x)))^2} \, dx-\log ^2(5) \int \frac {1}{x^3 (1+x+\log (-x (3+x)))^2} \, dx-\frac {1}{3} \left (4 \log ^2(5)\right ) \int \frac {1}{x^2 (1+x+\log (-x (3+x)))^2} \, dx-\left (2 \log ^2(5)\right ) \int \frac {1}{x^3 (1+x+\log (-x (3+x)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.61, size = 20, normalized size = 0.95 \begin {gather*} \frac {\log ^2(5)}{x^2 (1+x+\log (-x (3+x)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 28, normalized size = 1.33 \begin {gather*} \frac {\log \relax (5)^{2}}{x^{3} + x^{2} \log \left (-x^{2} - 3 \, x\right ) + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 28, normalized size = 1.33 \begin {gather*} \frac {\log \relax (5)^{2}}{x^{3} + x^{2} \log \left (-x^{2} - 3 \, x\right ) + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 1.14
method | result | size |
norman | \(\frac {\ln \relax (5)^{2}}{x^{2} \left (\ln \left (-x^{2}-3 x \right )+x +1\right )}\) | \(24\) |
risch | \(\frac {\ln \relax (5)^{2}}{x^{2} \left (\ln \left (-x^{2}-3 x \right )+x +1\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 30, normalized size = 1.43 \begin {gather*} \frac {\log \relax (5)^{2}}{x^{3} + x^{2} \log \relax (x) + x^{2} \log \left (-x - 3\right ) + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.25, size = 23, normalized size = 1.10 \begin {gather*} \frac {{\ln \relax (5)}^2}{x^2\,\left (x+\ln \left (-x^2-3\,x\right )+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 24, normalized size = 1.14 \begin {gather*} \frac {\log {\relax (5 )}^{2}}{x^{3} + x^{2} \log {\left (- x^{2} - 3 x \right )} + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________