Optimal. Leaf size=29 \[ e^{\frac {e^{-5+x+2 \left (1+\frac {1-\frac {x}{-5+x}}{x}\right )}}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 14.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right ) \left (-50-5 x+35 x^2-11 x^3+x^4\right )}{25 x^3-10 x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right ) \left (-50-5 x+35 x^2-11 x^3+x^4\right )}{x^3 \left (25-10 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right ) \left (-50-5 x+35 x^2-11 x^3+x^4\right )}{(-5+x)^2 x^3} \, dx\\ &=\int \left (\frac {2 \exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{5 (-5+x)^2}-\frac {2 \exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{25 (-5+x)}-\frac {2 \exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{x^3}-\frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{x^2}+\frac {27 \exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{25 x}\right ) \, dx\\ &=-\left (\frac {2}{25} \int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{-5+x} \, dx\right )+\frac {2}{5} \int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{(-5+x)^2} \, dx+\frac {27}{25} \int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{x} \, dx-2 \int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{x^3} \, dx-\int \frac {\exp \left (-5+\frac {e^{-5+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}}}{x}+x+\frac {-10-10 x+2 x^2}{-5 x+x^2}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.71, size = 23, normalized size = 0.79 \begin {gather*} e^{\frac {e^{-3-\frac {2}{-5+x}+\frac {2}{x}+x}}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 77, normalized size = 2.66 \begin {gather*} e^{\left (\frac {x^{3} - 8 \, x^{2} + {\left (x - 5\right )} e^{\left (\frac {x^{3} - 8 \, x^{2} + 15 \, x - 10}{x^{2} - 5 \, x}\right )} + 15 \, x - 10}{x^{2} - 5 \, x} - \frac {x^{3} - 8 \, x^{2} + 15 \, x - 10}{x^{2} - 5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{4} - 11 \, x^{3} + 35 \, x^{2} - 5 \, x - 50\right )} e^{\left (x + \frac {2 \, {\left (x^{2} - 5 \, x - 5\right )}}{x^{2} - 5 \, x} + \frac {e^{\left (x + \frac {2 \, {\left (x^{2} - 5 \, x - 5\right )}}{x^{2} - 5 \, x} - 5\right )}}{x} - 5\right )}}{x^{5} - 10 \, x^{4} + 25 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 29, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{\frac {x^{3}-8 x^{2}+15 x -10}{\left (x -5\right ) x}}}{x}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{4} - 11 \, x^{3} + 35 \, x^{2} - 5 \, x - 50\right )} e^{\left (x + \frac {2 \, {\left (x^{2} - 5 \, x - 5\right )}}{x^{2} - 5 \, x} + \frac {e^{\left (x + \frac {2 \, {\left (x^{2} - 5 \, x - 5\right )}}{x^{2} - 5 \, x} - 5\right )}}{x} - 5\right )}}{x^{5} - 10 \, x^{4} + 25 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.41, size = 40, normalized size = 1.38 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{-5}\,{\mathrm {e}}^{\frac {2\,x}{x-5}}\,{\mathrm {e}}^{\frac {10}{5\,x-x^2}}\,{\mathrm {e}}^x\,{\mathrm {e}}^{-\frac {10}{x-5}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.07, size = 26, normalized size = 0.90 \begin {gather*} e^{\frac {e^{\frac {2 x^{2} - 10 x - 10}{x^{2} - 5 x}} e^{x - 5}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________