Optimal. Leaf size=26 \[ \left (-5+\left (\frac {12}{x}+x\right )^2\right ) \left (-5+6 \log \left (x \left (x-x^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.50, antiderivative size = 115, normalized size of antiderivative = 4.42, number of steps used = 22, number of rules used = 13, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.206, Rules used = {1593, 6742, 1620, 2513, 2418, 2395, 44, 43, 2357, 2304, 446, 73, 14} \begin {gather*} -5 x^2-\frac {720}{x^2}+6 x^2 \log (1-x)+12 x^2 \log (x)-6 x^2 \left (-\log \left ((1-x) x^2\right )+\log (1-x)+2 \log (x)\right )+\frac {864 \log (1-x)}{x^2}+\frac {1728 \log (x)}{x^2}-\frac {864 \left (-\log \left ((1-x) x^2\right )+\log (1-x)+2 \log (x)\right )}{x^2}+114 \log (1-x)+228 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 44
Rule 73
Rule 446
Rule 1593
Rule 1620
Rule 2304
Rule 2357
Rule 2395
Rule 2418
Rule 2513
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3168+4032 x-228 x^2+342 x^3-2 x^4+8 x^5+\left (1728-1728 x-12 x^4+12 x^5\right ) \log \left (x^2-x^3\right )}{(-1+x) x^3} \, dx\\ &=\int \left (\frac {2 \left (-1584+2016 x-114 x^2+171 x^3-x^4+4 x^5\right )}{(-1+x) x^3}+\frac {12 \left (-12-x^2\right ) \left (12-x^2\right ) \log \left ((1-x) x^2\right )}{x^3}\right ) \, dx\\ &=2 \int \frac {-1584+2016 x-114 x^2+171 x^3-x^4+4 x^5}{(-1+x) x^3} \, dx+12 \int \frac {\left (-12-x^2\right ) \left (12-x^2\right ) \log \left ((1-x) x^2\right )}{x^3} \, dx\\ &=2 \int \left (3+\frac {492}{-1+x}+\frac {1584}{x^3}-\frac {432}{x^2}-\frac {318}{x}+4 x\right ) \, dx+12 \int \frac {\left (-12-x^2\right ) \left (12-x^2\right ) \log (1-x)}{x^3} \, dx+24 \int \frac {\left (-12-x^2\right ) \left (12-x^2\right ) \log (x)}{x^3} \, dx-\left (12 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )\right ) \int \frac {\left (-12-x^2\right ) \left (12-x^2\right )}{x^3} \, dx\\ &=-\frac {1584}{x^2}+\frac {864}{x}+6 x+4 x^2+984 \log (1-x)-636 \log (x)+12 \int \left (-\frac {144 \log (1-x)}{x^3}+x \log (1-x)\right ) \, dx+24 \int \left (-\frac {144 \log (x)}{x^3}+x \log (x)\right ) \, dx-\left (6 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )\right ) \operatorname {Subst}\left (\int \frac {(-12-x) (12-x)}{x^2} \, dx,x,x^2\right )\\ &=-\frac {1584}{x^2}+\frac {864}{x}+6 x+4 x^2+984 \log (1-x)-636 \log (x)+12 \int x \log (1-x) \, dx+24 \int x \log (x) \, dx-1728 \int \frac {\log (1-x)}{x^3} \, dx-3456 \int \frac {\log (x)}{x^3} \, dx-\left (6 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )\right ) \operatorname {Subst}\left (\int \frac {-144+x^2}{x^2} \, dx,x,x^2\right )\\ &=-\frac {720}{x^2}+\frac {864}{x}+6 x-2 x^2+984 \log (1-x)+\frac {864 \log (1-x)}{x^2}+6 x^2 \log (1-x)-636 \log (x)+\frac {1728 \log (x)}{x^2}+12 x^2 \log (x)+6 \int \frac {x^2}{1-x} \, dx+864 \int \frac {1}{(1-x) x^2} \, dx-\left (6 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )\right ) \operatorname {Subst}\left (\int \left (1-\frac {144}{x^2}\right ) \, dx,x,x^2\right )\\ &=-\frac {720}{x^2}+\frac {864}{x}+6 x-2 x^2+984 \log (1-x)+\frac {864 \log (1-x)}{x^2}+6 x^2 \log (1-x)-636 \log (x)+\frac {1728 \log (x)}{x^2}+12 x^2 \log (x)-\frac {864 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )}{x^2}-6 x^2 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )+6 \int \left (-1+\frac {1}{1-x}-x\right ) \, dx+864 \int \left (\frac {1}{1-x}+\frac {1}{x^2}+\frac {1}{x}\right ) \, dx\\ &=-\frac {720}{x^2}-5 x^2+114 \log (1-x)+\frac {864 \log (1-x)}{x^2}+6 x^2 \log (1-x)+228 \log (x)+\frac {1728 \log (x)}{x^2}+12 x^2 \log (x)-\frac {864 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )}{x^2}-6 x^2 \left (\log (1-x)+2 \log (x)-\log \left ((1-x) x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 53, normalized size = 2.04 \begin {gather*} -\frac {720}{x^2}-5 x^2+114 \log (1-x)+228 \log (x)+\frac {864 \log \left ((1-x) x^2\right )}{x^2}+6 x^2 \log \left ((1-x) x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 34, normalized size = 1.31 \begin {gather*} -\frac {5 \, x^{4} - 6 \, {\left (x^{4} + 19 \, x^{2} + 144\right )} \log \left (-x^{3} + x^{2}\right ) + 720}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 42, normalized size = 1.62 \begin {gather*} -5 \, x^{2} + 6 \, {\left (x^{2} + \frac {144}{x^{2}}\right )} \log \left (-x^{3} + x^{2}\right ) - \frac {720}{x^{2}} + 114 \, \log \left (x - 1\right ) + 228 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 49, normalized size = 1.88
method | result | size |
risch | \(\frac {6 \left (x^{4}+144\right ) \ln \left (-x^{3}+x^{2}\right )}{x^{2}}+\frac {-5 x^{4}+228 x^{2} \ln \relax (x )+114 \ln \left (x -1\right ) x^{2}-720}{x^{2}}\) | \(49\) |
default | \(6 \ln \left (-x^{3}+x^{2}\right ) x^{2}-5 x^{2}+114 \ln \left (x -1\right )+\frac {864 \ln \left (-x^{3}+x^{2}\right )}{x^{2}}-\frac {720}{x^{2}}+228 \ln \relax (x )\) | \(52\) |
norman | \(\frac {-720+114 \ln \left (-x^{3}+x^{2}\right ) x^{2}-5 x^{4}+6 \ln \left (-x^{3}+x^{2}\right ) x^{4}+864 \ln \left (-x^{3}+x^{2}\right )}{x^{2}}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 86, normalized size = 3.31 \begin {gather*} 4 \, x^{2} + 6 \, x - \frac {3 \, {\left (3 \, x^{4} + 2 \, x^{3} - 4 \, {\left (x^{4} + 72 \, x^{2} + 144\right )} \log \relax (x) - 2 \, {\left (x^{4} - 145 \, x^{2} + 144\right )} \log \left (-x + 1\right ) + 288 \, x - 288\right )}}{x^{2}} - \frac {1584 \, {\left (2 \, x + 1\right )}}{x^{2}} + \frac {4032}{x} + 984 \, \log \left (x - 1\right ) - 636 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.05, size = 47, normalized size = 1.81 \begin {gather*} 114\,\ln \left (x^2\,\left (x-1\right )\right )+x^2\,\left (6\,\ln \left (x^2-x^3\right )-5\right )+\frac {864\,\ln \left (x^2-x^3\right )-720}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 39, normalized size = 1.50 \begin {gather*} - 5 x^{2} + 228 \log {\relax (x )} + 114 \log {\left (x - 1 \right )} + \frac {\left (6 x^{4} + 864\right ) \log {\left (- x^{3} + x^{2} \right )}}{x^{2}} - \frac {720}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________