Optimal. Leaf size=34 \[ e^{\frac {4}{3} \left (-2+e^{x/2}-x+x^2\right ) \left (-3+\frac {3}{-e^x+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 53.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \left (8+e^{2 x} \left (4-2 e^{x/2}-8 x\right )+8 x^2-8 x^3+e^{x/2} \left (-4+2 x-2 x^2\right )+e^x \left (-4-20 x+20 x^2+e^{x/2} (2+4 x)\right )\right )}{e^{2 x}-2 e^x x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \left (8+e^{2 x} \left (4-2 e^{x/2}-8 x\right )+8 x^2-8 x^3+e^{x/2} \left (-4+2 x-2 x^2\right )+e^x \left (-4-20 x+20 x^2+e^{x/2} (2+4 x)\right )\right )}{\left (e^x-x\right )^2} \, dx\\ &=\int \left (-2 \exp \left (\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right )-4 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) (-1+2 x)+\frac {4 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) (-1+x) \left (-2+e^{x/2}-x+x^2\right )}{\left (e^x-x\right )^2}+\frac {2 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \left (-2+e^{x/2}-6 x+2 x^2\right )}{e^x-x}\right ) \, dx\\ &=-\left (2 \int \exp \left (\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \, dx\right )+2 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \left (-2+e^{x/2}-6 x+2 x^2\right )}{e^x-x} \, dx-4 \int \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) (-1+2 x) \, dx+4 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) (-1+x) \left (-2+e^{x/2}-x+x^2\right )}{\left (e^x-x\right )^2} \, dx\\ &=-\left (2 \int \exp \left (\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \, dx\right )+2 \int \left (-\frac {2 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right )}{e^x-x}+\frac {\exp \left (\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right )}{e^x-x}-\frac {6 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x}{e^x-x}+\frac {2 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x^2}{e^x-x}\right ) \, dx-4 \int \left (-\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right )+2 \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x\right ) \, dx+4 \int \left (-\frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \left (-2+e^{x/2}-x+x^2\right )}{\left (e^x-x\right )^2}+\frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x \left (-2+e^{x/2}-x+x^2\right )}{\left (e^x-x\right )^2}\right ) \, dx\\ &=-\left (2 \int \exp \left (\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \, dx\right )+2 \int \frac {\exp \left (\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right )}{e^x-x} \, dx+4 \int \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \, dx-4 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right )}{e^x-x} \, dx+4 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x^2}{e^x-x} \, dx-4 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) \left (-2+e^{x/2}-x+x^2\right )}{\left (e^x-x\right )^2} \, dx+4 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x \left (-2+e^{x/2}-x+x^2\right )}{\left (e^x-x\right )^2} \, dx-8 \int \exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x \, dx-12 \int \frac {\exp \left (\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}\right ) x}{e^x-x} \, dx\\ &=-\left (2 \int e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} \, dx\right )+2 \int \frac {e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{e^x-x} \, dx+4 \int e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} \, dx-4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{e^x-x} \, dx+4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^2}{e^x-x} \, dx-4 \int \left (-\frac {2 e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{\left (e^x-x\right )^2}+\frac {e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{\left (e^x-x\right )^2}-\frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{\left (e^x-x\right )^2}+\frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^2}{\left (e^x-x\right )^2}\right ) \, dx+4 \int \left (-\frac {2 e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{\left (e^x-x\right )^2}+\frac {e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{\left (e^x-x\right )^2}-\frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^2}{\left (e^x-x\right )^2}+\frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^3}{\left (e^x-x\right )^2}\right ) \, dx-8 \int e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x \, dx-12 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{e^x-x} \, dx\\ &=-\left (2 \int e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} \, dx\right )+2 \int \frac {e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{e^x-x} \, dx+4 \int e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} \, dx-4 \int \frac {e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{\left (e^x-x\right )^2} \, dx-4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{e^x-x} \, dx+4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{\left (e^x-x\right )^2} \, dx+4 \int \frac {e^{\frac {x}{2}+\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{\left (e^x-x\right )^2} \, dx-2 \left (4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^2}{\left (e^x-x\right )^2} \, dx\right )+4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^2}{e^x-x} \, dx+4 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x^3}{\left (e^x-x\right )^2} \, dx+8 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}}}{\left (e^x-x\right )^2} \, dx-8 \int e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x \, dx-8 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{\left (e^x-x\right )^2} \, dx-12 \int \frac {e^{\frac {8-4 x-8 x^2+4 x^3+e^{x/2} (-4+4 x)+e^x \left (8-4 e^{x/2}+4 x-4 x^2\right )}{e^x-x}} x}{e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 36, normalized size = 1.06 \begin {gather*} e^{-\frac {4 \left (1+e^x-x\right ) \left (-2+e^{x/2}-x+x^2\right )}{e^x-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 50, normalized size = 1.47 \begin {gather*} e^{\left (-\frac {4 \, {\left (x^{3} - 2 \, x^{2} + {\left (x - 1\right )} e^{\left (\frac {1}{2} \, x\right )} - {\left (x^{2} - x - 2\right )} e^{x} - x - e^{\left (\frac {3}{2} \, x\right )} + 2\right )}}{x - e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.76, size = 57, normalized size = 1.68 \begin {gather*} e^{\left (-\frac {4 \, {\left (x^{3} - x^{2} e^{x} - 2 \, x^{2} + x e^{\left (\frac {1}{2} \, x\right )} + x e^{x} - x - e^{\left (\frac {3}{2} \, x\right )} - e^{\left (\frac {1}{2} \, x\right )} + 2 \, e^{x} + 2\right )}}{x - e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 31, normalized size = 0.91
method | result | size |
risch | \({\mathrm e}^{-\frac {4 \left (x^{2}+{\mathrm e}^{\frac {x}{2}}-x -2\right ) \left (1+{\mathrm e}^{x}-x \right )}{{\mathrm e}^{x}-x}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {{\left (4 \, x^{3} - 4 \, x^{2} + {\left (4 \, x + e^{\left (\frac {1}{2} \, x\right )} - 2\right )} e^{\left (2 \, x\right )} + {\left (x^{2} - x + 2\right )} e^{\left (\frac {1}{2} \, x\right )} - {\left (10 \, x^{2} + {\left (2 \, x + 1\right )} e^{\left (\frac {1}{2} \, x\right )} - 10 \, x - 2\right )} e^{x} - 4\right )} e^{\left (-\frac {4 \, {\left (x^{3} - 2 \, x^{2} + {\left (x - 1\right )} e^{\left (\frac {1}{2} \, x\right )} - {\left (x^{2} - x + e^{\left (\frac {1}{2} \, x\right )} - 2\right )} e^{x} - x + 2\right )}}{x - e^{x}}\right )}}{x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.26, size = 143, normalized size = 4.21 \begin {gather*} {\mathrm {e}}^{-\frac {4\,x^3}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {8\,x^2}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {8\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {8}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{x/2}\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{x/2}}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {4\,x\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,x}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {4\,x\,{\mathrm {e}}^{x/2}}{x-{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 51, normalized size = 1.50 \begin {gather*} e^{\frac {4 x^{3} - 8 x^{2} - 4 x + \left (4 x - 4\right ) e^{\frac {x}{2}} + \left (- 4 x^{2} + 4 x - 4 e^{\frac {x}{2}} + 8\right ) e^{x} + 8}{- x + e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________