3.5.17 816+512e+80e2+(128+40e)log(x)+5log2(x)+(168+104e+16e2+(26+8e)log(x)+log2(x))log(80x)9+6e+e2dx

Optimal. Leaf size=23 x(4log(x)3e)2(4+log(80x))

________________________________________________________________________________________

Rubi [B]  time = 0.42, antiderivative size = 207, normalized size of antiderivative = 9.00, number of steps used = 17, number of rules used = 6, integrand size = 62, number of rulesintegrand size = 0.097, Rules used = {12, 2295, 2296, 6741, 6742, 2361} 16(17+5e)x3+e8(16+5e)x(3+e)2+4(13+4e)x(3+e)28(7+2e)x3+e+4x(3+e)2+4xlog2(x)(3+e)2+xlog(80x)log2(x)(3+e)2+8(16+5e)xlog(x)(3+e)22(13+4e)xlog(x)(3+e)26xlog(x)(3+e)2+2(13+4e)xlog(80x)log(x)(3+e)22xlog(80x)log(x)(3+e)22(13+4e)xlog(80x)(3+e)2+8(7+2e)xlog(80x)3+e+2xlog(80x)(3+e)2

Antiderivative was successfully verified.

[In]

Int[(816 + 512*E + 80*E^2 + (128 + 40*E)*Log[x] + 5*Log[x]^2 + (168 + 104*E + 16*E^2 + (26 + 8*E)*Log[x] + Log
[x]^2)*Log[80*x])/(9 + 6*E + E^2),x]

[Out]

(4*x)/(3 + E)^2 - (8*(7 + 2*E)*x)/(3 + E) + (4*(13 + 4*E)*x)/(3 + E)^2 - (8*(16 + 5*E)*x)/(3 + E)^2 + (16*(17
+ 5*E)*x)/(3 + E) - (6*x*Log[x])/(3 + E)^2 - (2*(13 + 4*E)*x*Log[x])/(3 + E)^2 + (8*(16 + 5*E)*x*Log[x])/(3 +
E)^2 + (4*x*Log[x]^2)/(3 + E)^2 + (2*x*Log[80*x])/(3 + E)^2 + (8*(7 + 2*E)*x*Log[80*x])/(3 + E) - (2*(13 + 4*E
)*x*Log[80*x])/(3 + E)^2 - (2*x*Log[x]*Log[80*x])/(3 + E)^2 + (2*(13 + 4*E)*x*Log[x]*Log[80*x])/(3 + E)^2 + (x
*Log[x]^2*Log[80*x])/(3 + E)^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2361

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[SimplifyIntegrand[u/x, x], x],
 x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(816+512e+80e2+(128+40e)log(x)+5log2(x)+(168+104e+16e2+(26+8e)log(x)+log2(x))log(80x))dx(3+e)2=16(17+5e)x3+e+(168+104e+16e2+(26+8e)log(x)+log2(x))log(80x)dx(3+e)2+5log2(x)dx(3+e)2+(8(16+5e))log(x)dx(3+e)2=8(16+5e)x(3+e)2+16(17+5e)x3+e+8(16+5e)xlog(x)(3+e)2+5xlog2(x)(3+e)2+(168(1+121e(13+2e))+(26+8e)log(x)+log2(x))log(80x)dx(3+e)210log(x)dx(3+e)2=10x(3+e)28(16+5e)x(3+e)2+16(17+5e)x3+e10xlog(x)(3+e)2+8(16+5e)xlog(x)(3+e)2+5xlog2(x)(3+e)2+(8(3+e)(7+2e)log(80x)+2(13+4e)log(x)log(80x)+log2(x)log(80x))dx(3+e)2=10x(3+e)28(16+5e)x(3+e)2+16(17+5e)x3+e10xlog(x)(3+e)2+8(16+5e)xlog(x)(3+e)2+5xlog2(x)(3+e)2+log2(x)log(80x)dx(3+e)2+(8(7+2e))log(80x)dx3+e+(2(13+4e))log(x)log(80x)dx(3+e)2=10x(3+e)28(7+2e)x3+e8(16+5e)x(3+e)2+16(17+5e)x3+e10xlog(x)(3+e)2+8(16+5e)xlog(x)(3+e)2+5xlog2(x)(3+e)2+2xlog(80x)(3+e)2+8(7+2e)xlog(80x)3+e2(13+4e)xlog(80x)(3+e)22xlog(x)log(80x)(3+e)2+2(13+4e)xlog(x)log(80x)(3+e)2+xlog2(x)log(80x)(3+e)2(22log(x)+log2(x))dx(3+e)2(2(13+4e))(1+log(x))dx(3+e)2=8x(3+e)28(7+2e)x3+e+2(13+4e)x(3+e)28(16+5e)x(3+e)2+16(17+5e)x3+e10xlog(x)(3+e)2+8(16+5e)xlog(x)(3+e)2+5xlog2(x)(3+e)2+2xlog(80x)(3+e)2+8(7+2e)xlog(80x)3+e2(13+4e)xlog(80x)(3+e)22xlog(x)log(80x)(3+e)2+2(13+4e)xlog(x)log(80x)(3+e)2+xlog2(x)log(80x)(3+e)2log2(x)dx(3+e)2+2log(x)dx(3+e)2(2(13+4e))log(x)dx(3+e)2=6x(3+e)28(7+2e)x3+e+4(13+4e)x(3+e)28(16+5e)x(3+e)2+16(17+5e)x3+e8xlog(x)(3+e)22(13+4e)xlog(x)(3+e)2+8(16+5e)xlog(x)(3+e)2+4xlog2(x)(3+e)2+2xlog(80x)(3+e)2+8(7+2e)xlog(80x)3+e2(13+4e)xlog(80x)(3+e)22xlog(x)log(80x)(3+e)2+2(13+4e)xlog(x)log(80x)(3+e)2+xlog2(x)log(80x)(3+e)2+2log(x)dx(3+e)2=4x(3+e)28(7+2e)x3+e+4(13+4e)x(3+e)28(16+5e)x(3+e)2+16(17+5e)x3+e6xlog(x)(3+e)22(13+4e)xlog(x)(3+e)2+8(16+5e)xlog(x)(3+e)2+4xlog2(x)(3+e)2+2xlog(80x)(3+e)2+8(7+2e)xlog(80x)3+e2(13+4e)xlog(80x)(3+e)22xlog(x)log(80x)(3+e)2+2(13+4e)xlog(x)log(80x)(3+e)2+xlog2(x)log(80x)(3+e)2

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 23, normalized size = 1.00 x(4(3+e)+log(x))2(4+log(80x))(3+e)2

Antiderivative was successfully verified.

[In]

Integrate[(816 + 512*E + 80*E^2 + (128 + 40*E)*Log[x] + 5*Log[x]^2 + (168 + 104*E + 16*E^2 + (26 + 8*E)*Log[x]
 + Log[x]^2)*Log[80*x])/(9 + 6*E + E^2),x]

[Out]

(x*(4*(3 + E) + Log[x])^2*(4 + Log[80*x]))/(3 + E)^2

________________________________________________________________________________________

fricas [B]  time = 0.67, size = 95, normalized size = 4.13 xlog(x)3+(8xe+xlog(80)+28x)log(x)2+64xe2+384xe+16(xe2+6xe+9x)log(80)+8(2xe2+16xe+(xe+3x)log(80)+30x)log(x)+576xe2+6e+9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)^2+(8*exp(1)+26)*log(x)+16*exp(1)^2+104*exp(1)+168)*log(80*x)+5*log(x)^2+(40*exp(1)+128)*log
(x)+80*exp(1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x, algorithm="fricas")

[Out]

(x*log(x)^3 + (8*x*e + x*log(80) + 28*x)*log(x)^2 + 64*x*e^2 + 384*x*e + 16*(x*e^2 + 6*x*e + 9*x)*log(80) + 8*
(2*x*e^2 + 16*x*e + (x*e + 3*x)*log(80) + 30*x)*log(x) + 576*x)/(e^2 + 6*e + 9)

________________________________________________________________________________________

giac [B]  time = 0.21, size = 125, normalized size = 5.43 8xelog(80)log(x)+8xelog(x)2+xlog(80)log(x)2+xlog(x)3+16xe2log(80)+96xelog(80)+16xe2log(x)+88xelog(x)+24xlog(80)log(x)+28xlog(x)2+8(xlog(x)x)(5e+16)+64xe2+424xe+144xlog(80)+112xlog(x)+704xe2+6e+9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)^2+(8*exp(1)+26)*log(x)+16*exp(1)^2+104*exp(1)+168)*log(80*x)+5*log(x)^2+(40*exp(1)+128)*log
(x)+80*exp(1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x, algorithm="giac")

[Out]

(8*x*e*log(80)*log(x) + 8*x*e*log(x)^2 + x*log(80)*log(x)^2 + x*log(x)^3 + 16*x*e^2*log(80) + 96*x*e*log(80) +
 16*x*e^2*log(x) + 88*x*e*log(x) + 24*x*log(80)*log(x) + 28*x*log(x)^2 + 8*(x*log(x) - x)*(5*e + 16) + 64*x*e^
2 + 424*x*e + 144*x*log(80) + 112*x*log(x) + 704*x)/(e^2 + 6*e + 9)

________________________________________________________________________________________

maple [B]  time = 0.12, size = 72, normalized size = 3.13




method result size



norman (64e+192)x+(16e+48)xln(80x)+xln(x)2ln(80x)3+e+32xln(x)+8xln(x)ln(80x)+4xln(x)23+e3+e 72
default 576x+128xeln(x)+384xe+240xln(x)+16e2ln(80)x+16xe2ln(x)+64e2x+8ln(80)eln(x)x+96eln(80)x+8eln(x)2x+ln(80)ln(x)2x+24ln(80)ln(x)x+144ln(80)x+xln(x)3+28xln(x)2e2+6e+9 118
risch xln(x)3e2+6e+9+(56+16e+8ln(2)+2ln(5))xln(x)22e2+12e+18+4(60+4e2+8eln(2)+2eln(5)+32e+24ln(2)+6ln(5))xln(x)e2+6e+9+64xe2ln(2)e2+6e+9+16xe2ln(5)e2+6e+9+384xeln(2)e2+6e+9+96xeln(5)e2+6e+9+64xe2e2+6e+9+384xee2+6e+9+576xln(2)e2+6e+9+144xln(5)e2+6e+9+576xe2+6e+9 235



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((ln(x)^2+(8*exp(1)+26)*ln(x)+16*exp(1)^2+104*exp(1)+168)*ln(80*x)+5*ln(x)^2+(40*exp(1)+128)*ln(x)+80*exp(
1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x,method=_RETURNVERBOSE)

[Out]

((64*exp(1)+192)*x+(16*exp(1)+48)*x*ln(80*x)+1/(3+exp(1))*x*ln(x)^2*ln(80*x)+32*x*ln(x)+8*x*ln(x)*ln(80*x)+4/(
3+exp(1))*x*ln(x)^2)/(3+exp(1))

________________________________________________________________________________________

maxima [B]  time = 0.42, size = 133, normalized size = 5.78 2x(4e+11)log(x)+xlog(x)25(log(x)22log(x)+2)x+2x(8e2+44e+61)8(xlog(x)x)(5e+16)80xe2512xe((log(x)22log(x)+2)x+2(xlog(x)x)(4e+13)+16xe2+104xe+168x)log(80x)816xe2+6e+9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((log(x)^2+(8*exp(1)+26)*log(x)+16*exp(1)^2+104*exp(1)+168)*log(80*x)+5*log(x)^2+(40*exp(1)+128)*log
(x)+80*exp(1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x, algorithm="maxima")

[Out]

-(2*x*(4*e + 11)*log(x) + x*log(x)^2 - 5*(log(x)^2 - 2*log(x) + 2)*x + 2*x*(8*e^2 + 44*e + 61) - 8*(x*log(x) -
 x)*(5*e + 16) - 80*x*e^2 - 512*x*e - ((log(x)^2 - 2*log(x) + 2)*x + 2*(x*log(x) - x)*(4*e + 13) + 16*x*e^2 +
104*x*e + 168*x)*log(80*x) - 816*x)/(e^2 + 6*e + 9)

________________________________________________________________________________________

mupad [B]  time = 0.55, size = 76, normalized size = 3.30 x(ln(x)3+ln(x)2(ln(80x)+8eln(x)+28)+16(e+3)2(ln(80x)ln(x)+4)+8ln(x)(e+3)(ln(80x)+2eln(x)+10))6e+e2+9

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((512*exp(1) + 80*exp(2) + log(80*x)*(104*exp(1) + 16*exp(2) + log(x)^2 + log(x)*(8*exp(1) + 26) + 168) + 5
*log(x)^2 + log(x)*(40*exp(1) + 128) + 816)/(6*exp(1) + exp(2) + 9),x)

[Out]

(x*(log(x)^3 + log(x)^2*(log(80*x) + 8*exp(1) - log(x) + 28) + 16*(exp(1) + 3)^2*(log(80*x) - log(x) + 4) + 8*
log(x)*(exp(1) + 3)*(log(80*x) + 2*exp(1) - log(x) + 10)))/(6*exp(1) + exp(2) + 9)

________________________________________________________________________________________

sympy [B]  time = 0.40, size = 80, normalized size = 3.48 xlog(x)3e2+9+6e+x(64+16log(80))+(xlog(80)+8ex+28x)log(x)2e2+9+6e+(8xlog(80)+16ex+80x)log(x)e+3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((ln(x)**2+(8*exp(1)+26)*ln(x)+16*exp(1)**2+104*exp(1)+168)*ln(80*x)+5*ln(x)**2+(40*exp(1)+128)*ln(x
)+80*exp(1)**2+512*exp(1)+816)/(exp(1)**2+6*exp(1)+9),x)

[Out]

x*log(x)**3/(exp(2) + 9 + 6*E) + x*(64 + 16*log(80)) + (x*log(80) + 8*E*x + 28*x)*log(x)**2/(exp(2) + 9 + 6*E)
 + (8*x*log(80) + 16*E*x + 80*x)*log(x)/(E + 3)

________________________________________________________________________________________