3.5.17
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 207, normalized size of antiderivative = 9.00,
number of steps used = 17, number of rules used = 6, integrand size = 62, = 0.097, Rules used
= {12, 2295, 2296, 6741, 6742, 2361}
Antiderivative was successfully verified.
[In]
Int[(816 + 512*E + 80*E^2 + (128 + 40*E)*Log[x] + 5*Log[x]^2 + (168 + 104*E + 16*E^2 + (26 + 8*E)*Log[x] + Log
[x]^2)*Log[80*x])/(9 + 6*E + E^2),x]
[Out]
(4*x)/(3 + E)^2 - (8*(7 + 2*E)*x)/(3 + E) + (4*(13 + 4*E)*x)/(3 + E)^2 - (8*(16 + 5*E)*x)/(3 + E)^2 + (16*(17
+ 5*E)*x)/(3 + E) - (6*x*Log[x])/(3 + E)^2 - (2*(13 + 4*E)*x*Log[x])/(3 + E)^2 + (8*(16 + 5*E)*x*Log[x])/(3 +
E)^2 + (4*x*Log[x]^2)/(3 + E)^2 + (2*x*Log[80*x])/(3 + E)^2 + (8*(7 + 2*E)*x*Log[80*x])/(3 + E) - (2*(13 + 4*E
)*x*Log[80*x])/(3 + E)^2 - (2*x*Log[x]*Log[80*x])/(3 + E)^2 + (2*(13 + 4*E)*x*Log[x]*Log[80*x])/(3 + E)^2 + (x
*Log[x]^2*Log[80*x])/(3 + E)^2
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2296
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
Rule 2361
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[SimplifyIntegrand[u/x, x], x],
x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 23, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(816 + 512*E + 80*E^2 + (128 + 40*E)*Log[x] + 5*Log[x]^2 + (168 + 104*E + 16*E^2 + (26 + 8*E)*Log[x]
+ Log[x]^2)*Log[80*x])/(9 + 6*E + E^2),x]
[Out]
(x*(4*(3 + E) + Log[x])^2*(4 + Log[80*x]))/(3 + E)^2
________________________________________________________________________________________
fricas [B] time = 0.67, size = 95, normalized size = 4.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((log(x)^2+(8*exp(1)+26)*log(x)+16*exp(1)^2+104*exp(1)+168)*log(80*x)+5*log(x)^2+(40*exp(1)+128)*log
(x)+80*exp(1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x, algorithm="fricas")
[Out]
(x*log(x)^3 + (8*x*e + x*log(80) + 28*x)*log(x)^2 + 64*x*e^2 + 384*x*e + 16*(x*e^2 + 6*x*e + 9*x)*log(80) + 8*
(2*x*e^2 + 16*x*e + (x*e + 3*x)*log(80) + 30*x)*log(x) + 576*x)/(e^2 + 6*e + 9)
________________________________________________________________________________________
giac [B] time = 0.21, size = 125, normalized size = 5.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((log(x)^2+(8*exp(1)+26)*log(x)+16*exp(1)^2+104*exp(1)+168)*log(80*x)+5*log(x)^2+(40*exp(1)+128)*log
(x)+80*exp(1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x, algorithm="giac")
[Out]
(8*x*e*log(80)*log(x) + 8*x*e*log(x)^2 + x*log(80)*log(x)^2 + x*log(x)^3 + 16*x*e^2*log(80) + 96*x*e*log(80) +
16*x*e^2*log(x) + 88*x*e*log(x) + 24*x*log(80)*log(x) + 28*x*log(x)^2 + 8*(x*log(x) - x)*(5*e + 16) + 64*x*e^
2 + 424*x*e + 144*x*log(80) + 112*x*log(x) + 704*x)/(e^2 + 6*e + 9)
________________________________________________________________________________________
maple [B] time = 0.12, size = 72, normalized size = 3.13
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((ln(x)^2+(8*exp(1)+26)*ln(x)+16*exp(1)^2+104*exp(1)+168)*ln(80*x)+5*ln(x)^2+(40*exp(1)+128)*ln(x)+80*exp(
1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x,method=_RETURNVERBOSE)
[Out]
((64*exp(1)+192)*x+(16*exp(1)+48)*x*ln(80*x)+1/(3+exp(1))*x*ln(x)^2*ln(80*x)+32*x*ln(x)+8*x*ln(x)*ln(80*x)+4/(
3+exp(1))*x*ln(x)^2)/(3+exp(1))
________________________________________________________________________________________
maxima [B] time = 0.42, size = 133, normalized size = 5.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((log(x)^2+(8*exp(1)+26)*log(x)+16*exp(1)^2+104*exp(1)+168)*log(80*x)+5*log(x)^2+(40*exp(1)+128)*log
(x)+80*exp(1)^2+512*exp(1)+816)/(exp(1)^2+6*exp(1)+9),x, algorithm="maxima")
[Out]
-(2*x*(4*e + 11)*log(x) + x*log(x)^2 - 5*(log(x)^2 - 2*log(x) + 2)*x + 2*x*(8*e^2 + 44*e + 61) - 8*(x*log(x) -
x)*(5*e + 16) - 80*x*e^2 - 512*x*e - ((log(x)^2 - 2*log(x) + 2)*x + 2*(x*log(x) - x)*(4*e + 13) + 16*x*e^2 +
104*x*e + 168*x)*log(80*x) - 816*x)/(e^2 + 6*e + 9)
________________________________________________________________________________________
mupad [B] time = 0.55, size = 76, normalized size = 3.30
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((512*exp(1) + 80*exp(2) + log(80*x)*(104*exp(1) + 16*exp(2) + log(x)^2 + log(x)*(8*exp(1) + 26) + 168) + 5
*log(x)^2 + log(x)*(40*exp(1) + 128) + 816)/(6*exp(1) + exp(2) + 9),x)
[Out]
(x*(log(x)^3 + log(x)^2*(log(80*x) + 8*exp(1) - log(x) + 28) + 16*(exp(1) + 3)^2*(log(80*x) - log(x) + 4) + 8*
log(x)*(exp(1) + 3)*(log(80*x) + 2*exp(1) - log(x) + 10)))/(6*exp(1) + exp(2) + 9)
________________________________________________________________________________________
sympy [B] time = 0.40, size = 80, normalized size = 3.48
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((ln(x)**2+(8*exp(1)+26)*ln(x)+16*exp(1)**2+104*exp(1)+168)*ln(80*x)+5*ln(x)**2+(40*exp(1)+128)*ln(x
)+80*exp(1)**2+512*exp(1)+816)/(exp(1)**2+6*exp(1)+9),x)
[Out]
x*log(x)**3/(exp(2) + 9 + 6*E) + x*(64 + 16*log(80)) + (x*log(80) + 8*E*x + 28*x)*log(x)**2/(exp(2) + 9 + 6*E)
+ (8*x*log(80) + 16*E*x + 80*x)*log(x)/(E + 3)
________________________________________________________________________________________