Optimal. Leaf size=23 \[ x \left (4-\frac {\log (x)}{-3-e}\right )^2 (4+\log (80 x)) \]
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 207, normalized size of antiderivative = 9.00, number of steps used = 17, number of rules used = 6, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 2295, 2296, 6741, 6742, 2361} \begin {gather*} \frac {16 (17+5 e) x}{3+e}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {4 (13+4 e) x}{(3+e)^2}-\frac {8 (7+2 e) x}{3+e}+\frac {4 x}{(3+e)^2}+\frac {4 x \log ^2(x)}{(3+e)^2}+\frac {x \log (80 x) \log ^2(x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}-\frac {2 (13+4 e) x \log (x)}{(3+e)^2}-\frac {6 x \log (x)}{(3+e)^2}+\frac {2 (13+4 e) x \log (80 x) \log (x)}{(3+e)^2}-\frac {2 x \log (80 x) \log (x)}{(3+e)^2}-\frac {2 (13+4 e) x \log (80 x)}{(3+e)^2}+\frac {8 (7+2 e) x \log (80 x)}{3+e}+\frac {2 x \log (80 x)}{(3+e)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2296
Rule 2361
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (816+512 e+80 e^2+(128+40 e) \log (x)+5 \log ^2(x)+\left (168+104 e+16 e^2+(26+8 e) \log (x)+\log ^2(x)\right ) \log (80 x)\right ) \, dx}{(3+e)^2}\\ &=\frac {16 (17+5 e) x}{3+e}+\frac {\int \left (168+104 e+16 e^2+(26+8 e) \log (x)+\log ^2(x)\right ) \log (80 x) \, dx}{(3+e)^2}+\frac {5 \int \log ^2(x) \, dx}{(3+e)^2}+\frac {(8 (16+5 e)) \int \log (x) \, dx}{(3+e)^2}\\ &=-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {5 x \log ^2(x)}{(3+e)^2}+\frac {\int \left (168 \left (1+\frac {1}{21} e (13+2 e)\right )+(26+8 e) \log (x)+\log ^2(x)\right ) \log (80 x) \, dx}{(3+e)^2}-\frac {10 \int \log (x) \, dx}{(3+e)^2}\\ &=\frac {10 x}{(3+e)^2}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}-\frac {10 x \log (x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {5 x \log ^2(x)}{(3+e)^2}+\frac {\int \left (8 (3+e) (7+2 e) \log (80 x)+2 (13+4 e) \log (x) \log (80 x)+\log ^2(x) \log (80 x)\right ) \, dx}{(3+e)^2}\\ &=\frac {10 x}{(3+e)^2}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}-\frac {10 x \log (x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {5 x \log ^2(x)}{(3+e)^2}+\frac {\int \log ^2(x) \log (80 x) \, dx}{(3+e)^2}+\frac {(8 (7+2 e)) \int \log (80 x) \, dx}{3+e}+\frac {(2 (13+4 e)) \int \log (x) \log (80 x) \, dx}{(3+e)^2}\\ &=\frac {10 x}{(3+e)^2}-\frac {8 (7+2 e) x}{3+e}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}-\frac {10 x \log (x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {5 x \log ^2(x)}{(3+e)^2}+\frac {2 x \log (80 x)}{(3+e)^2}+\frac {8 (7+2 e) x \log (80 x)}{3+e}-\frac {2 (13+4 e) x \log (80 x)}{(3+e)^2}-\frac {2 x \log (x) \log (80 x)}{(3+e)^2}+\frac {2 (13+4 e) x \log (x) \log (80 x)}{(3+e)^2}+\frac {x \log ^2(x) \log (80 x)}{(3+e)^2}-\frac {\int \left (2-2 \log (x)+\log ^2(x)\right ) \, dx}{(3+e)^2}-\frac {(2 (13+4 e)) \int (-1+\log (x)) \, dx}{(3+e)^2}\\ &=\frac {8 x}{(3+e)^2}-\frac {8 (7+2 e) x}{3+e}+\frac {2 (13+4 e) x}{(3+e)^2}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}-\frac {10 x \log (x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {5 x \log ^2(x)}{(3+e)^2}+\frac {2 x \log (80 x)}{(3+e)^2}+\frac {8 (7+2 e) x \log (80 x)}{3+e}-\frac {2 (13+4 e) x \log (80 x)}{(3+e)^2}-\frac {2 x \log (x) \log (80 x)}{(3+e)^2}+\frac {2 (13+4 e) x \log (x) \log (80 x)}{(3+e)^2}+\frac {x \log ^2(x) \log (80 x)}{(3+e)^2}-\frac {\int \log ^2(x) \, dx}{(3+e)^2}+\frac {2 \int \log (x) \, dx}{(3+e)^2}-\frac {(2 (13+4 e)) \int \log (x) \, dx}{(3+e)^2}\\ &=\frac {6 x}{(3+e)^2}-\frac {8 (7+2 e) x}{3+e}+\frac {4 (13+4 e) x}{(3+e)^2}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}-\frac {8 x \log (x)}{(3+e)^2}-\frac {2 (13+4 e) x \log (x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {4 x \log ^2(x)}{(3+e)^2}+\frac {2 x \log (80 x)}{(3+e)^2}+\frac {8 (7+2 e) x \log (80 x)}{3+e}-\frac {2 (13+4 e) x \log (80 x)}{(3+e)^2}-\frac {2 x \log (x) \log (80 x)}{(3+e)^2}+\frac {2 (13+4 e) x \log (x) \log (80 x)}{(3+e)^2}+\frac {x \log ^2(x) \log (80 x)}{(3+e)^2}+\frac {2 \int \log (x) \, dx}{(3+e)^2}\\ &=\frac {4 x}{(3+e)^2}-\frac {8 (7+2 e) x}{3+e}+\frac {4 (13+4 e) x}{(3+e)^2}-\frac {8 (16+5 e) x}{(3+e)^2}+\frac {16 (17+5 e) x}{3+e}-\frac {6 x \log (x)}{(3+e)^2}-\frac {2 (13+4 e) x \log (x)}{(3+e)^2}+\frac {8 (16+5 e) x \log (x)}{(3+e)^2}+\frac {4 x \log ^2(x)}{(3+e)^2}+\frac {2 x \log (80 x)}{(3+e)^2}+\frac {8 (7+2 e) x \log (80 x)}{3+e}-\frac {2 (13+4 e) x \log (80 x)}{(3+e)^2}-\frac {2 x \log (x) \log (80 x)}{(3+e)^2}+\frac {2 (13+4 e) x \log (x) \log (80 x)}{(3+e)^2}+\frac {x \log ^2(x) \log (80 x)}{(3+e)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 23, normalized size = 1.00 \begin {gather*} \frac {x (4 (3+e)+\log (x))^2 (4+\log (80 x))}{(3+e)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 95, normalized size = 4.13 \begin {gather*} \frac {x \log \relax (x)^{3} + {\left (8 \, x e + x \log \left (80\right ) + 28 \, x\right )} \log \relax (x)^{2} + 64 \, x e^{2} + 384 \, x e + 16 \, {\left (x e^{2} + 6 \, x e + 9 \, x\right )} \log \left (80\right ) + 8 \, {\left (2 \, x e^{2} + 16 \, x e + {\left (x e + 3 \, x\right )} \log \left (80\right ) + 30 \, x\right )} \log \relax (x) + 576 \, x}{e^{2} + 6 \, e + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 125, normalized size = 5.43 \begin {gather*} \frac {8 \, x e \log \left (80\right ) \log \relax (x) + 8 \, x e \log \relax (x)^{2} + x \log \left (80\right ) \log \relax (x)^{2} + x \log \relax (x)^{3} + 16 \, x e^{2} \log \left (80\right ) + 96 \, x e \log \left (80\right ) + 16 \, x e^{2} \log \relax (x) + 88 \, x e \log \relax (x) + 24 \, x \log \left (80\right ) \log \relax (x) + 28 \, x \log \relax (x)^{2} + 8 \, {\left (x \log \relax (x) - x\right )} {\left (5 \, e + 16\right )} + 64 \, x e^{2} + 424 \, x e + 144 \, x \log \left (80\right ) + 112 \, x \log \relax (x) + 704 \, x}{e^{2} + 6 \, e + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 72, normalized size = 3.13
method | result | size |
norman | \(\frac {\left (64 \,{\mathrm e}+192\right ) x +\left (16 \,{\mathrm e}+48\right ) x \ln \left (80 x \right )+\frac {x \ln \relax (x )^{2} \ln \left (80 x \right )}{3+{\mathrm e}}+32 x \ln \relax (x )+8 x \ln \relax (x ) \ln \left (80 x \right )+\frac {4 x \ln \relax (x )^{2}}{3+{\mathrm e}}}{3+{\mathrm e}}\) | \(72\) |
default | \(\frac {576 x +128 x \,{\mathrm e} \ln \relax (x )+384 x \,{\mathrm e}+240 x \ln \relax (x )+16 \,{\mathrm e}^{2} \ln \left (80\right ) x +16 x \,{\mathrm e}^{2} \ln \relax (x )+64 \,{\mathrm e}^{2} x +8 \ln \left (80\right ) {\mathrm e} \ln \relax (x ) x +96 \,{\mathrm e} \ln \left (80\right ) x +8 \,{\mathrm e} \ln \relax (x )^{2} x +\ln \left (80\right ) \ln \relax (x )^{2} x +24 \ln \left (80\right ) \ln \relax (x ) x +144 \ln \left (80\right ) x +x \ln \relax (x )^{3}+28 x \ln \relax (x )^{2}}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}\) | \(118\) |
risch | \(\frac {x \ln \relax (x )^{3}}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {\left (56+16 \,{\mathrm e}+8 \ln \relax (2)+2 \ln \relax (5)\right ) x \ln \relax (x )^{2}}{2 \,{\mathrm e}^{2}+12 \,{\mathrm e}+18}+\frac {4 \left (60+4 \,{\mathrm e}^{2}+8 \,{\mathrm e} \ln \relax (2)+2 \,{\mathrm e} \ln \relax (5)+32 \,{\mathrm e}+24 \ln \relax (2)+6 \ln \relax (5)\right ) x \ln \relax (x )}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {64 x \,{\mathrm e}^{2} \ln \relax (2)}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {16 x \,{\mathrm e}^{2} \ln \relax (5)}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {384 x \,{\mathrm e} \ln \relax (2)}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {96 x \,{\mathrm e} \ln \relax (5)}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {64 x \,{\mathrm e}^{2}}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {384 x \,{\mathrm e}}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {576 x \ln \relax (2)}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {144 x \ln \relax (5)}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}+\frac {576 x}{{\mathrm e}^{2}+6 \,{\mathrm e}+9}\) | \(235\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 133, normalized size = 5.78 \begin {gather*} -\frac {2 \, x {\left (4 \, e + 11\right )} \log \relax (x) + x \log \relax (x)^{2} - 5 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x + 2 \, x {\left (8 \, e^{2} + 44 \, e + 61\right )} - 8 \, {\left (x \log \relax (x) - x\right )} {\left (5 \, e + 16\right )} - 80 \, x e^{2} - 512 \, x e - {\left ({\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x + 2 \, {\left (x \log \relax (x) - x\right )} {\left (4 \, e + 13\right )} + 16 \, x e^{2} + 104 \, x e + 168 \, x\right )} \log \left (80 \, x\right ) - 816 \, x}{e^{2} + 6 \, e + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.55, size = 76, normalized size = 3.30 \begin {gather*} \frac {x\,\left ({\ln \relax (x)}^3+{\ln \relax (x)}^2\,\left (\ln \left (80\,x\right )+8\,\mathrm {e}-\ln \relax (x)+28\right )+16\,{\left (\mathrm {e}+3\right )}^2\,\left (\ln \left (80\,x\right )-\ln \relax (x)+4\right )+8\,\ln \relax (x)\,\left (\mathrm {e}+3\right )\,\left (\ln \left (80\,x\right )+2\,\mathrm {e}-\ln \relax (x)+10\right )\right )}{6\,\mathrm {e}+{\mathrm {e}}^2+9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 80, normalized size = 3.48 \begin {gather*} \frac {x \log {\relax (x )}^{3}}{e^{2} + 9 + 6 e} + x \left (64 + 16 \log {\left (80 \right )}\right ) + \frac {\left (x \log {\left (80 \right )} + 8 e x + 28 x\right ) \log {\relax (x )}^{2}}{e^{2} + 9 + 6 e} + \frac {\left (8 x \log {\left (80 \right )} + 16 e x + 80 x\right ) \log {\relax (x )}}{e + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________