Optimal. Leaf size=22 \[ 2-\frac {4}{\left (x \left (1+x^2\right )-\log (3)\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x+4 x^3-4 \log (3)+\left (4 x+12 x^3\right ) \log (x)}{\left (x^3+2 x^5+x^7+\left (-2 x^2-2 x^4\right ) \log (3)+x \log ^2(3)\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (x+x^3-\log (3)+\left (x+3 x^3\right ) \log (x)\right )}{x \left (x+x^3-\log (3)\right )^2 \log ^2(x)} \, dx\\ &=4 \int \frac {x+x^3-\log (3)+\left (x+3 x^3\right ) \log (x)}{x \left (x+x^3-\log (3)\right )^2 \log ^2(x)} \, dx\\ &=4 \int \left (\frac {1}{x \left (x+x^3-\log (3)\right ) \log ^2(x)}+\frac {1+3 x^2}{\left (x+x^3-\log (3)\right )^2 \log (x)}\right ) \, dx\\ &=4 \int \frac {1}{x \left (x+x^3-\log (3)\right ) \log ^2(x)} \, dx+4 \int \frac {1+3 x^2}{\left (x+x^3-\log (3)\right )^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 19, normalized size = 0.86 \begin {gather*} \frac {4}{\left (-x-x^3+\log (3)\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 17, normalized size = 0.77 \begin {gather*} -\frac {4}{{\left (x^{3} + x - \log \relax (3)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.95 \begin {gather*} -\frac {4}{x^{3} \log \relax (x) + x \log \relax (x) - \log \relax (3) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 20, normalized size = 0.91
method | result | size |
norman | \(\frac {4}{\left (-x^{3}+\ln \relax (3)-x \right ) \ln \relax (x )}\) | \(20\) |
risch | \(\frac {4}{\left (-x^{3}+\ln \relax (3)-x \right ) \ln \relax (x )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 17, normalized size = 0.77 \begin {gather*} -\frac {4}{{\left (x^{3} + x - \log \relax (3)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 30, normalized size = 1.36 \begin {gather*} -\frac {4\,x^3+4\,x-\ln \left (81\right )}{\ln \relax (x)\,{\left (x^3+x-\ln \relax (3)\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 14, normalized size = 0.64 \begin {gather*} - \frac {4}{\left (x^{3} + x - \log {\relax (3 )}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________