Optimal. Leaf size=21 \[ \frac {3^{8+10 e^x x}}{x^2}+\log (8-x) \]
________________________________________________________________________________________
Rubi [B] time = 0.69, antiderivative size = 45, normalized size of antiderivative = 2.14, number of steps used = 4, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {1593, 6688, 2288} \begin {gather*} \frac {2\ 9^{5 e^x x+4} e^x (x+1) \log (3)}{x^2 \left (e^x x+e^x\right ) \log (9)}+\log (8-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3+e^{2 \left (4 \log (3)+5 e^x x \log (3)\right )} \left (16-2 x+e^x \left (-80 x-70 x^2+10 x^3\right ) \log (3)\right )}{(-8+x) x^3} \, dx\\ &=\int \left (\frac {1}{-8+x}+\frac {2\ 9^{4+5 e^x x} \left (-1+5 e^x x (1+x) \log (3)\right )}{x^3}\right ) \, dx\\ &=\log (8-x)+2 \int \frac {9^{4+5 e^x x} \left (-1+5 e^x x (1+x) \log (3)\right )}{x^3} \, dx\\ &=\frac {2\ 9^{4+5 e^x x} e^x (1+x) \log (3)}{x^2 \left (e^x+e^x x\right ) \log (9)}+\log (8-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 0.90 \begin {gather*} \frac {9^{4+5 e^x x}}{x^2}+\log (-8+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 26, normalized size = 1.24 \begin {gather*} \frac {x^{2} \log \left (x - 8\right ) + e^{\left (10 \, x e^{x} \log \relax (3) + 8 \, \log \relax (3)\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3} + 2 \, {\left (5 \, {\left (x^{3} - 7 \, x^{2} - 8 \, x\right )} e^{x} \log \relax (3) - x + 8\right )} e^{\left (10 \, x e^{x} \log \relax (3) + 8 \, \log \relax (3)\right )}}{x^{4} - 8 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 20, normalized size = 0.95
method | result | size |
risch | \(\ln \left (-8+x \right )+\frac {6561 \,3^{10 \,{\mathrm e}^{x} x}}{x^{2}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 17, normalized size = 0.81 \begin {gather*} \frac {6561 \cdot 3^{10 \, x e^{x}}}{x^{2}} + \log \left (x - 8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.42, size = 17, normalized size = 0.81 \begin {gather*} \ln \left (x-8\right )+\frac {6561\,3^{10\,x\,{\mathrm {e}}^x}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.95 \begin {gather*} \log {\left (x - 8 \right )} + \frac {6561 e^{10 x e^{x} \log {\relax (3 )}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________