Optimal. Leaf size=25 \[ 1+e^{x \left (x^2+\frac {1}{25 \left (16+x+\frac {x}{\log (x)}\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 x+(400+25 x) \log (x)}\right ) \left (x+75 x^4+\left (2400 x^3+150 x^4\right ) \log (x)+\left (16+19200 x^2+2400 x^3+75 x^4\right ) \log ^2(x)\right )}{25 x^2+\left (800 x+50 x^2\right ) \log (x)+\left (6400+800 x+25 x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) \left (x+75 x^4+\left (2400 x^3+150 x^4\right ) \log (x)+\left (16+19200 x^2+2400 x^3+75 x^4\right ) \log ^2(x)\right )}{25 (x+16 \log (x)+x \log (x))^2} \, dx\\ &=\frac {1}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) \left (x+75 x^4+\left (2400 x^3+150 x^4\right ) \log (x)+\left (16+19200 x^2+2400 x^3+75 x^4\right ) \log ^2(x)\right )}{(x+16 \log (x)+x \log (x))^2} \, dx\\ &=\frac {1}{25} \int \left (\frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) \left (16+19200 x^2+2400 x^3+75 x^4\right )}{(16+x)^2}+\frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x \left (256+48 x+x^2\right )}{(16+x)^2 (x+16 \log (x)+x \log (x))^2}-\frac {32 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x}{(16+x)^2 (x+16 \log (x)+x \log (x))}\right ) \, dx\\ &=\frac {1}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) \left (16+19200 x^2+2400 x^3+75 x^4\right )}{(16+x)^2} \, dx+\frac {1}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x \left (256+48 x+x^2\right )}{(16+x)^2 (x+16 \log (x)+x \log (x))^2} \, dx-\frac {32}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x}{(16+x)^2 (x+16 \log (x)+x \log (x))} \, dx\\ &=\frac {1}{25} \int \left (75 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x^2+\frac {16 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x)^2}\right ) \, dx+\frac {1}{25} \int \left (\frac {16 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(x+16 \log (x)+x \log (x))^2}+\frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x}{(x+16 \log (x)+x \log (x))^2}+\frac {4096 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x)^2 (x+16 \log (x)+x \log (x))^2}-\frac {512 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x) (x+16 \log (x)+x \log (x))^2}\right ) \, dx-\frac {32}{25} \int \left (-\frac {16 \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x)^2 (x+16 \log (x)+x \log (x))}+\frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x) (x+16 \log (x)+x \log (x))}\right ) \, dx\\ &=\frac {1}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x}{(x+16 \log (x)+x \log (x))^2} \, dx+\frac {16}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x)^2} \, dx+\frac {16}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(x+16 \log (x)+x \log (x))^2} \, dx-\frac {32}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x) (x+16 \log (x)+x \log (x))} \, dx+3 \int \exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right ) x^2 \, dx-\frac {512}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x) (x+16 \log (x)+x \log (x))^2} \, dx+\frac {512}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x)^2 (x+16 \log (x)+x \log (x))} \, dx+\frac {4096}{25} \int \frac {\exp \left (\frac {25 x^4+\left (x+400 x^3+25 x^4\right ) \log (x)}{25 (x+16 \log (x)+x \log (x))}\right )}{(16+x)^2 (x+16 \log (x)+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.19, size = 69, normalized size = 2.76 \begin {gather*} e^{x^3+\frac {x}{400+25 x}+\frac {x^4}{x+(16+x) \log (x)}} x^{-\frac {x^2+400 x^4+25 x^5}{25 (16+x) \log (x) (x+(16+x) \log (x))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 34, normalized size = 1.36 \begin {gather*} e^{\left (\frac {25 \, x^{4} + {\left (25 \, x^{4} + 400 \, x^{3} + x\right )} \log \relax (x)}{25 \, {\left ({\left (x + 16\right )} \log \relax (x) + x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 72, normalized size = 2.88 \begin {gather*} e^{\left (\frac {x^{4} \log \relax (x)}{x \log \relax (x) + x + 16 \, \log \relax (x)} + \frac {x^{4}}{x \log \relax (x) + x + 16 \, \log \relax (x)} + \frac {16 \, x^{3} \log \relax (x)}{x \log \relax (x) + x + 16 \, \log \relax (x)} + \frac {x \log \relax (x)}{25 \, {\left (x \log \relax (x) + x + 16 \, \log \relax (x)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 39, normalized size = 1.56
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (25 x^{3} \ln \relax (x )+400 x^{2} \ln \relax (x )+25 x^{3}+\ln \relax (x )\right )}{25 x \ln \relax (x )+400 \ln \relax (x )+25 x}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.61, size = 64, normalized size = 2.56 \begin {gather*} x^{\frac {x^4+16\,x^3}{x+16\,\ln \relax (x)+x\,\ln \relax (x)}+\frac {x}{25\,x+400\,\ln \relax (x)+25\,x\,\ln \relax (x)}}\,{\mathrm {e}}^{\frac {25\,x^4}{25\,x+400\,\ln \relax (x)+25\,x\,\ln \relax (x)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.70, size = 32, normalized size = 1.28 \begin {gather*} e^{\frac {25 x^{4} + \left (25 x^{4} + 400 x^{3} + x\right ) \log {\relax (x )}}{25 x + \left (25 x + 400\right ) \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________