Optimal. Leaf size=23 \[ \frac {x^2}{3+3 x+\log \left (\frac {1}{4} \left (1+\frac {1}{e^3}\right )^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 41, normalized size of antiderivative = 1.78, number of steps used = 5, number of rules used = 5, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6, 1593, 1983, 27, 74} \begin {gather*} -\frac {\left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )^2}{9 \left (-3 x+3-2 \log \left (1+e^3\right )+\log (4)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 27
Rule 74
Rule 1593
Rule 1983
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x^2+x \left (6+2 \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx\\ &=\int \frac {x \left (6+3 x+2 \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )\right )}{9+18 x+9 x^2+(6+6 x) \log \left (\frac {1+2 e^3+e^6}{4 e^6}\right )+\log ^2\left (\frac {1+2 e^3+e^6}{4 e^6}\right )} \, dx\\ &=\int \frac {x \left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )}{9 x^2-6 x \left (3+\log (4)-2 \log \left (1+e^3\right )\right )+\left (3+\log (4)-2 \log \left (1+e^3\right )\right )^2} \, dx\\ &=\int \frac {x \left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )}{\left (-3+3 x-\log (4)+2 \log \left (1+e^3\right )\right )^2} \, dx\\ &=-\frac {\left (3 x-2 \left (3+\log (4)-2 \log \left (1+e^3\right )\right )\right )^2}{9 \left (3-3 x+\log (4)-2 \log \left (1+e^3\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 54, normalized size = 2.35 \begin {gather*} \frac {1}{9} \left (-3+3 x-\log (4)-\frac {\left (3+\log (4)-2 \log \left (1+e^3\right )\right )^2}{3-3 x+\log (4)-2 \log \left (1+e^3\right )}+2 \log \left (1+e^3\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 65, normalized size = 2.83 \begin {gather*} \frac {9 \, x^{2} + 3 \, {\left (x + 2\right )} \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right )^{2} + 9 \, x + 9}{9 \, {\left (3 \, x + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 58, normalized size = 2.52 \begin {gather*} \frac {1}{3} \, x + \frac {\log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right )^{2} + 6 \, \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 9}{9 \, {\left (3 \, x + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 25, normalized size = 1.09
method | result | size |
norman | \(\frac {x^{2}}{\ln \left (\frac {{\mathrm e}^{6}}{4}+\frac {{\mathrm e}^{3}}{2}+\frac {1}{4}\right )+3 x -3}\) | \(25\) |
gosper | \(\frac {x^{2}}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3 x +3}\) | \(29\) |
default | \(\frac {x}{3}-\frac {-\frac {\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )^{2}}{9}-\frac {2 \ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )}{3}-1}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3 x +3}\) | \(61\) |
risch | \(\frac {x}{3}+\frac {2 \ln \left ({\mathrm e}^{3}+1\right )^{2}}{9 \left (-\ln \relax (2)+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}-\frac {4 \ln \relax (2) \ln \left ({\mathrm e}^{3}+1\right )}{9 \left (-\ln \relax (2)+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}+\frac {2 \ln \relax (2)^{2}}{9 \left (-\ln \relax (2)+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}-\frac {2 \ln \left ({\mathrm e}^{3}+1\right )}{3 \left (-\ln \relax (2)+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}+\frac {2 \ln \relax (2)}{3 \left (-\ln \relax (2)+\ln \left ({\mathrm e}^{3}+1\right )-\frac {3}{2}+\frac {3 x}{2}\right )}+\frac {1}{-2 \ln \relax (2)+2 \ln \left ({\mathrm e}^{3}+1\right )-3+3 x}\) | \(138\) |
meijerg | \(\frac {\left (2 \ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+6\right ) \left (-\frac {3 x}{\left (\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3\right ) \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )}+\ln \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )\right )}{9}+\frac {\left (\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3\right )^{2} \left (\frac {x \left (\frac {9 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}+6\right )}{\left (\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3\right ) \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )}-2 \ln \left (1+\frac {3 x}{\ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+3}\right )\right )}{9 \ln \left (\frac {\left ({\mathrm e}^{6}+2 \,{\mathrm e}^{3}+1\right ) {\mathrm e}^{-6}}{4}\right )+27}\) | \(218\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 58, normalized size = 2.52 \begin {gather*} \frac {1}{3} \, x + \frac {\log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right )^{2} + 6 \, \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 9}{9 \, {\left (3 \, x + \log \left (\frac {1}{4} \, {\left (e^{6} + 2 \, e^{3} + 1\right )} e^{\left (-6\right )}\right ) + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.95, size = 196, normalized size = 8.52 \begin {gather*} \frac {x}{3}-\frac {2\,\mathrm {atan}\left (\frac {\frac {\left (\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )-18\right )\,\left (\ln \left (\frac {4096}{{\left ({\mathrm {e}}^3+1\right )}^{12}}\right )+4\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2+9\right )}{3\,\sqrt {144\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2-{\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )}^2}}+\frac {x\,\left (\ln \left (\frac {105312291668557186697918027683670432318895095400549111254310977536}{{\left ({\mathrm {e}}^3+1\right )}^{216}}\right )+72\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2+162\right )}{3\,\sqrt {144\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2-{\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )}^2}}}{\ln \left (\frac {16}{{\left ({\mathrm {e}}^3+1\right )}^4}\right )+\frac {4\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2}{3}+3}\right )\,\left (\ln \left (\frac {4096}{{\left ({\mathrm {e}}^3+1\right )}^{12}}\right )+4\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2+9\right )}{3\,\sqrt {144\,{\ln \left (\frac {{\mathrm {e}}^3}{2}+\frac {1}{2}\right )}^2-{\ln \left (\frac {{\left ({\mathrm {e}}^3+1\right )}^{12}}{4096}\right )}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.63, size = 83, normalized size = 3.61 \begin {gather*} \frac {x}{3} + \frac {- 6 \log {\left (1 + 2 e^{3} + e^{6} \right )} - 4 \log {\relax (2 )} \log {\left (1 + 2 e^{3} + e^{6} \right )} + 4 \log {\relax (2 )}^{2} + 12 \log {\relax (2 )} + 9 + \log {\left (1 + 2 e^{3} + e^{6} \right )}^{2}}{27 x - 27 - 18 \log {\relax (2 )} + 9 \log {\left (1 + 2 e^{3} + e^{6} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________