Optimal. Leaf size=26 \[ x-x \left (-5 \left (2-e^{4 x-8 x^2}\right )+x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.39, antiderivative size = 71, normalized size of antiderivative = 2.73, number of steps used = 25, number of rules used = 6, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {2288, 6742, 2234, 2205, 2240, 2241} \begin {gather*} -x^3-10 e^{4 x-8 x^2} x^2+20 x^2+100 e^{4 x-8 x^2} x-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}-99 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2234
Rule 2240
Rule 2241
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-99 x+20 x^2-x^3+\int e^{8 x-16 x^2} \left (-25-200 x+800 x^2\right ) \, dx+\int e^{4 x-8 x^2} \left (100+380 x-1640 x^2+160 x^3\right ) \, dx\\ &=-99 x+20 x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}+\int \left (100 e^{4 x-8 x^2}+380 e^{4 x-8 x^2} x-1640 e^{4 x-8 x^2} x^2+160 e^{4 x-8 x^2} x^3\right ) \, dx\\ &=-99 x+20 x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}+100 \int e^{4 x-8 x^2} \, dx+160 \int e^{4 x-8 x^2} x^3 \, dx+380 \int e^{4 x-8 x^2} x \, dx-1640 \int e^{4 x-8 x^2} x^2 \, dx\\ &=-\frac {95}{4} e^{4 x-8 x^2}-99 x+\frac {205}{2} e^{4 x-8 x^2} x+20 x^2-10 e^{4 x-8 x^2} x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}+20 \int e^{4 x-8 x^2} x \, dx+40 \int e^{4 x-8 x^2} x^2 \, dx+95 \int e^{4 x-8 x^2} \, dx-\frac {205}{2} \int e^{4 x-8 x^2} \, dx-410 \int e^{4 x-8 x^2} x \, dx+\left (100 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx\\ &=\frac {5}{8} e^{4 x-8 x^2}-99 x+100 e^{4 x-8 x^2} x+20 x^2-10 e^{4 x-8 x^2} x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}-25 \sqrt {\frac {e \pi }{2}} \text {erf}\left (\frac {1-4 x}{\sqrt {2}}\right )+\frac {5}{2} \int e^{4 x-8 x^2} \, dx+5 \int e^{4 x-8 x^2} \, dx+10 \int e^{4 x-8 x^2} x \, dx-\frac {205}{2} \int e^{4 x-8 x^2} \, dx+\left (95 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx-\frac {1}{2} \left (205 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx\\ &=-99 x+100 e^{4 x-8 x^2} x+20 x^2-10 e^{4 x-8 x^2} x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}-\frac {185}{8} \sqrt {\frac {e \pi }{2}} \text {erf}\left (\frac {1-4 x}{\sqrt {2}}\right )+\frac {5}{2} \int e^{4 x-8 x^2} \, dx+\frac {1}{2} \left (5 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx+\left (5 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx-\frac {1}{2} \left (205 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx\\ &=-99 x+100 e^{4 x-8 x^2} x+20 x^2-10 e^{4 x-8 x^2} x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}+\frac {5}{8} \sqrt {\frac {e \pi }{2}} \text {erf}\left (\frac {1-4 x}{\sqrt {2}}\right )+\frac {1}{2} \left (5 \sqrt {e}\right ) \int e^{-\frac {1}{32} (4-16 x)^2} \, dx\\ &=-99 x+100 e^{4 x-8 x^2} x+20 x^2-10 e^{4 x-8 x^2} x^2-x^3-\frac {25 e^{8 x-16 x^2} \left (x-4 x^2\right )}{1-4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 39, normalized size = 1.50 \begin {gather*} x \left (-99-25 e^{-8 x (-1+2 x)}-10 e^{4 (1-2 x) x} (-10+x)+20 x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.78, size = 46, normalized size = 1.77 \begin {gather*} -x^{3} + 20 \, x^{2} - 10 \, {\left (x^{2} - 10 \, x\right )} e^{\left (-8 \, x^{2} + 4 \, x\right )} - 25 \, x e^{\left (-16 \, x^{2} + 8 \, x\right )} - 99 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.50, size = 51, normalized size = 1.96 \begin {gather*} -x^{3} + 20 \, x^{2} - \frac {5}{8} \, {\left ({\left (4 \, x - 1\right )}^{2} - 152 \, x - 1\right )} e^{\left (-8 \, x^{2} + 4 \, x\right )} - 25 \, x e^{\left (-16 \, x^{2} + 8 \, x\right )} - 99 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 46, normalized size = 1.77
method | result | size |
risch | \(-25 \,{\mathrm e}^{-8 x \left (2 x -1\right )} x +\left (-10 x^{2}+100 x \right ) {\mathrm e}^{-4 x \left (2 x -1\right )}-x^{3}+20 x^{2}-99 x\) | \(46\) |
default | \(-99 x -25 x \,{\mathrm e}^{-16 x^{2}+8 x}+100 \,{\mathrm e}^{-8 x^{2}+4 x} x -10 \,{\mathrm e}^{-8 x^{2}+4 x} x^{2}+20 x^{2}-x^{3}\) | \(56\) |
norman | \(-99 x -25 x \,{\mathrm e}^{-16 x^{2}+8 x}+100 \,{\mathrm e}^{-8 x^{2}+4 x} x -10 \,{\mathrm e}^{-8 x^{2}+4 x} x^{2}+20 x^{2}-x^{3}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 46, normalized size = 1.77 \begin {gather*} -x^{3} + 20 \, x^{2} - 10 \, {\left (x^{2} - 10 \, x\right )} e^{\left (-8 \, x^{2} + 4 \, x\right )} - 25 \, x e^{\left (-16 \, x^{2} + 8 \, x\right )} - 99 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 48, normalized size = 1.85 \begin {gather*} -x\,\left (25\,{\mathrm {e}}^{8\,x-16\,x^2}-100\,{\mathrm {e}}^{4\,x-8\,x^2}-20\,x+10\,x\,{\mathrm {e}}^{4\,x-8\,x^2}+x^2+99\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 42, normalized size = 1.62 \begin {gather*} - x^{3} + 20 x^{2} - 25 x e^{- 16 x^{2} + 8 x} - 99 x + \left (- 10 x^{2} + 100 x\right ) e^{- 8 x^{2} + 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________