Optimal. Leaf size=14 \[ e^{\frac {1}{12} \left (x^2-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 15, normalized size of antiderivative = 1.07, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {12, 2274, 2288} \begin {gather*} \frac {e^{\frac {x^2}{12}}}{\sqrt [12]{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int \frac {e^{\frac {1}{12} \left (x^2-\log (x)\right )} \left (-1+2 x^2\right )}{x} \, dx\\ &=\frac {1}{12} \int \frac {e^{\frac {x^2}{12}} \left (-1+2 x^2\right )}{x^{13/12}} \, dx\\ &=\frac {e^{\frac {x^2}{12}}}{\sqrt [12]{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.07 \begin {gather*} \frac {e^{\frac {x^2}{12}}}{\sqrt [12]{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 11, normalized size = 0.79 \begin {gather*} e^{\left (\frac {1}{12} \, x^{2} - \frac {1}{12} \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 11, normalized size = 0.79 \begin {gather*} e^{\left (\frac {1}{12} \, x^{2} - \frac {1}{12} \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 11, normalized size = 0.79
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {x^{2}}{12}}}{x^{\frac {1}{12}}}\) | \(11\) |
gosper | \({\mathrm e}^{\ln \left (\frac {1}{x^{\frac {1}{12}}}\right )+\frac {x^{2}}{12}}\) | \(14\) |
norman | \({\mathrm e}^{\ln \left (\frac {1}{x^{\frac {1}{12}}}\right )+\frac {x^{2}}{12}}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 45, normalized size = 3.21 \begin {gather*} -\frac {\left (\frac {1}{12}\right )^{\frac {1}{24}} x^{\frac {23}{12}} \Gamma \left (\frac {23}{24}, -\frac {1}{12} \, x^{2}\right )}{\left (-x^{2}\right )^{\frac {23}{24}}} + \frac {\left (\frac {1}{12}\right )^{\frac {1}{24}} \left (-x^{2}\right )^{\frac {1}{24}} \Gamma \left (-\frac {1}{24}, -\frac {1}{12} \, x^{2}\right )}{24 \, x^{\frac {1}{12}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.18, size = 10, normalized size = 0.71 \begin {gather*} \frac {{\mathrm {e}}^{\frac {x^2}{12}}}{x^{1/12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________