Optimal. Leaf size=28 \[ \frac {x-4 \left (\frac {3}{2 \left (4+e^{2 x^2}\right )}-\log (4)\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24+e^{2 x^2} \left (6+24 x^2-32 \log (4)\right )-64 \log (4)-4 e^{4 x^2} \log (4)}{16 x^2+8 e^{2 x^2} x^2+e^{4 x^2} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x^2} \left (6+24 x^2-32 \log (4)\right )+24 \left (1-\frac {8 \log (4)}{3}\right )-4 e^{4 x^2} \log (4)}{\left (4+e^{2 x^2}\right )^2 x^2} \, dx\\ &=\int \left (-\frac {96}{\left (4+e^{2 x^2}\right )^2}+\frac {6 \left (1+4 x^2\right )}{\left (4+e^{2 x^2}\right ) x^2}-\frac {4 \log (4)}{x^2}\right ) \, dx\\ &=\frac {4 \log (4)}{x}+6 \int \frac {1+4 x^2}{\left (4+e^{2 x^2}\right ) x^2} \, dx-96 \int \frac {1}{\left (4+e^{2 x^2}\right )^2} \, dx\\ &=\frac {4 \log (4)}{x}+6 \int \left (\frac {4}{4+e^{2 x^2}}+\frac {1}{\left (4+e^{2 x^2}\right ) x^2}\right ) \, dx-96 \int \frac {1}{\left (4+e^{2 x^2}\right )^2} \, dx\\ &=\frac {4 \log (4)}{x}+6 \int \frac {1}{\left (4+e^{2 x^2}\right ) x^2} \, dx+24 \int \frac {1}{4+e^{2 x^2}} \, dx-96 \int \frac {1}{\left (4+e^{2 x^2}\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 21, normalized size = 0.75 \begin {gather*} \frac {2 \left (-\frac {3}{4+e^{2 x^2}}+\log (16)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 32, normalized size = 1.14 \begin {gather*} \frac {2 \, {\left (4 \, e^{\left (2 \, x^{2}\right )} \log \relax (2) + 16 \, \log \relax (2) - 3\right )}}{x e^{\left (2 \, x^{2}\right )} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 32, normalized size = 1.14 \begin {gather*} \frac {2 \, {\left (4 \, e^{\left (2 \, x^{2}\right )} \log \relax (2) + 16 \, \log \relax (2) - 3\right )}}{x e^{\left (2 \, x^{2}\right )} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 0.86
method | result | size |
risch | \(\frac {8 \ln \relax (2)}{x}-\frac {6}{x \left ({\mathrm e}^{2 x^{2}}+4\right )}\) | \(24\) |
norman | \(\frac {-6+8 \ln \relax (2) {\mathrm e}^{2 x^{2}}+32 \ln \relax (2)}{x \left ({\mathrm e}^{2 x^{2}}+4\right )}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 32, normalized size = 1.14 \begin {gather*} \frac {2 \, {\left (4 \, e^{\left (2 \, x^{2}\right )} \log \relax (2) + 16 \, \log \relax (2) - 3\right )}}{x e^{\left (2 \, x^{2}\right )} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 23, normalized size = 0.82 \begin {gather*} \frac {8\,\ln \relax (2)}{x}-\frac {6}{x\,\left ({\mathrm {e}}^{2\,x^2}+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 0.68 \begin {gather*} - \frac {6}{x e^{2 x^{2}} + 4 x} + \frac {8 \log {\relax (2 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________