Optimal. Leaf size=29 \[ 1+\frac {5}{-3+e^2+e^{-4+x}}-\frac {-4+x}{x (5+x)} \]
________________________________________________________________________________________
Rubi [A] time = 1.79, antiderivative size = 40, normalized size of antiderivative = 1.38, number of steps used = 12, number of rules used = 8, integrand size = 213, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {6688, 6742, 2282, 44, 36, 31, 29, 893} \begin {gather*} \frac {4}{5 x}-\frac {9}{5 (x+5)}+\frac {5 e^4}{e^x-e^4 \left (3-e^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 44
Rule 893
Rule 2282
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x} \left (-20-8 x+x^2\right )+2 e^{6+x} \left (-20-8 x+x^2\right )+9 e^8 \left (1+\frac {1}{9} e^2 \left (-6+e^2\right )\right ) \left (-20-8 x+x^2\right )+e^{4+x} \left (120+48 x-131 x^2-50 x^3-5 x^4\right )}{\left (e^x-3 e^4 \left (1-\frac {e^2}{3}\right )\right )^2 x^2 (5+x)^2} \, dx\\ &=\int \left (\frac {5 e^8 \left (-3+e^2\right )}{\left (e^x-3 e^4 \left (1-\frac {e^2}{3}\right )\right )^2}+\frac {5 e^4}{-e^x+3 e^4 \left (1-\frac {e^2}{3}\right )}+\frac {-20-8 x+x^2}{x^2 (5+x)^2}\right ) \, dx\\ &=\left (5 e^4\right ) \int \frac {1}{-e^x+3 e^4 \left (1-\frac {e^2}{3}\right )} \, dx-\left (5 e^8 \left (3-e^2\right )\right ) \int \frac {1}{\left (e^x-3 e^4 \left (1-\frac {e^2}{3}\right )\right )^2} \, dx+\int \frac {-20-8 x+x^2}{x^2 (5+x)^2} \, dx\\ &=\left (5 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{\left (3 e^4-e^6-x\right ) x} \, dx,x,e^x\right )-\left (5 e^8 \left (3-e^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\left (3 e^4-e^6-x\right )^2 x} \, dx,x,e^x\right )+\int \left (-\frac {4}{5 x^2}+\frac {9}{5 (5+x)^2}\right ) \, dx\\ &=\frac {4}{5 x}-\frac {9}{5 (5+x)}+\frac {5 \operatorname {Subst}\left (\int \frac {1}{3 e^4-e^6-x} \, dx,x,e^x\right )}{3-e^2}+\frac {5 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{3-e^2}-\left (5 e^8 \left (3-e^2\right )\right ) \operatorname {Subst}\left (\int \left (\frac {1}{e^8 \left (-3+e^2\right )^2 x}-\frac {1}{e^4 \left (-3+e^2\right ) \left (-3 e^4+e^6+x\right )^2}-\frac {1}{e^8 \left (-3+e^2\right )^2 \left (-3 e^4+e^6+x\right )}\right ) \, dx,x,e^x\right )\\ &=\frac {5 e^4}{e^x-e^4 \left (3-e^2\right )}+\frac {4}{5 x}-\frac {9}{5 (5+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 36, normalized size = 1.24 \begin {gather*} \frac {5 e^4}{-3 e^4+e^6+e^x}+\frac {4}{5 x}-\frac {9}{5 (5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 63, normalized size = 2.17 \begin {gather*} -\frac {5 \, x^{2} - {\left (x - 4\right )} e^{2} - {\left (x - 4\right )} e^{\left (x - 4\right )} + 28 \, x - 12}{3 \, x^{2} - {\left (x^{2} + 5 \, x\right )} e^{2} - {\left (x^{2} + 5 \, x\right )} e^{\left (x - 4\right )} + 15 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 73, normalized size = 2.52 \begin {gather*} \frac {5 \, x^{2} e^{4} - x e^{6} + 28 \, x e^{4} - x e^{x} + 4 \, e^{6} - 12 \, e^{4} + 4 \, e^{x}}{x^{2} e^{6} - 3 \, x^{2} e^{4} + x^{2} e^{x} + 5 \, x e^{6} - 15 \, x e^{4} + 5 \, x e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.77, size = 28, normalized size = 0.97
method | result | size |
risch | \(\frac {-x +4}{\left (5+x \right ) x}+\frac {5}{{\mathrm e}^{x -4}+{\mathrm e}^{2}-3}\) | \(28\) |
norman | \(\frac {5 x^{2}+\left (-{\mathrm e}^{2}+28\right ) x -x \,{\mathrm e}^{x -4}+4 \,{\mathrm e}^{x -4}+4 \,{\mathrm e}^{2}-12}{x \left (5+x \right ) \left ({\mathrm e}^{x -4}+{\mathrm e}^{2}-3\right )}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 68, normalized size = 2.34 \begin {gather*} \frac {5 \, x^{2} e^{4} - x {\left (e^{6} - 28 \, e^{4}\right )} - {\left (x - 4\right )} e^{x} + 4 \, e^{6} - 12 \, e^{4}}{x^{2} {\left (e^{6} - 3 \, e^{4}\right )} + 5 \, x {\left (e^{6} - 3 \, e^{4}\right )} + {\left (x^{2} + 5 \, x\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 27, normalized size = 0.93 \begin {gather*} \frac {5}{{\mathrm {e}}^{x-4}+{\mathrm {e}}^2-3}-\frac {x-4}{x^2+5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 20, normalized size = 0.69 \begin {gather*} \frac {4 - x}{x^{2} + 5 x} + \frac {5}{e^{x - 4} - 3 + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________