Optimal. Leaf size=30 \[ -3+e^{\frac {2}{e^3}-5 x^2}+\frac {e^x \left (4+\frac {3}{x}\right )}{x}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 31, normalized size of antiderivative = 1.03, number of steps used = 13, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {14, 2209, 2199, 2177, 2178} \begin {gather*} e^{\frac {2}{e^3}-5 x^2}+\frac {3 e^x}{x^2}+x+\frac {4 e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2177
Rule 2178
Rule 2199
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-10 e^{\frac {2}{e^3}-5 x^2} x+\frac {-6 e^x-e^x x+4 e^x x^2+x^3}{x^3}\right ) \, dx\\ &=-\left (10 \int e^{\frac {2}{e^3}-5 x^2} x \, dx\right )+\int \frac {-6 e^x-e^x x+4 e^x x^2+x^3}{x^3} \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+\int \left (1+\frac {e^x \left (-6-x+4 x^2\right )}{x^3}\right ) \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+x+\int \frac {e^x \left (-6-x+4 x^2\right )}{x^3} \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+x+\int \left (-\frac {6 e^x}{x^3}-\frac {e^x}{x^2}+\frac {4 e^x}{x}\right ) \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+x+4 \int \frac {e^x}{x} \, dx-6 \int \frac {e^x}{x^3} \, dx-\int \frac {e^x}{x^2} \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+\frac {3 e^x}{x^2}+\frac {e^x}{x}+x+4 \text {Ei}(x)-3 \int \frac {e^x}{x^2} \, dx-\int \frac {e^x}{x} \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+\frac {3 e^x}{x^2}+\frac {4 e^x}{x}+x+3 \text {Ei}(x)-3 \int \frac {e^x}{x} \, dx\\ &=e^{\frac {2}{e^3}-5 x^2}+\frac {3 e^x}{x^2}+\frac {4 e^x}{x}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 1.03 \begin {gather*} e^{\frac {2}{e^3}-5 x^2}+\frac {3 e^x}{x^2}+\frac {4 e^x}{x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 32, normalized size = 1.07 \begin {gather*} \frac {x^{3} + x^{2} e^{\left (-5 \, x^{2} + e^{\left (\log \relax (2) - 3\right )}\right )} + {\left (4 \, x + 3\right )} e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 32, normalized size = 1.07 \begin {gather*} \frac {x^{3} + x^{2} e^{\left (-5 \, x^{2} + 2 \, e^{\left (-3\right )}\right )} + 4 \, x e^{x} + 3 \, e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 0.83
method | result | size |
risch | \(x +\frac {\left (3+4 x \right ) {\mathrm e}^{x}}{x^{2}}+{\mathrm e}^{2 \,{\mathrm e}^{-3}-5 x^{2}}\) | \(25\) |
default | \(x +\frac {3 \,{\mathrm e}^{x}}{x^{2}}+\frac {4 \,{\mathrm e}^{x}}{x}+{\mathrm e}^{2 \,{\mathrm e}^{-3}} {\mathrm e}^{-5 x^{2}}\) | \(29\) |
norman | \(\frac {x^{3}+x^{2} {\mathrm e}^{{\mathrm e}^{\ln \relax (2)-3}-5 x^{2}}+4 \,{\mathrm e}^{x} x +3 \,{\mathrm e}^{x}}{x^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 31, normalized size = 1.03 \begin {gather*} x + 4 \, {\rm Ei}\relax (x) + e^{\left (-5 \, x^{2} + 2 \, e^{\left (-3\right )}\right )} - \Gamma \left (-1, -x\right ) + 6 \, \Gamma \left (-2, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.39, size = 28, normalized size = 0.93 \begin {gather*} x+\frac {4\,{\mathrm {e}}^x}{x}+\frac {3\,{\mathrm {e}}^x}{x^2}+{\mathrm {e}}^{2\,{\mathrm {e}}^{-3}}\,{\mathrm {e}}^{-5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 0.80 \begin {gather*} x + e^{- 5 x^{2} + \frac {2}{e^{3}}} + \frac {\left (4 x + 3\right ) e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________