Optimal. Leaf size=25 \[ e^x-x+2 \left (e^3+\log ^2\left (2-x+\log \left (\frac {5}{2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 6, number of rules used = 5, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.109, Rules used = {6688, 2194, 2390, 12, 2301} \begin {gather*} e^x-x+2 \log ^2\left (-x+2+\log \left (\frac {5}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2301
Rule 2390
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+e^x+\frac {4 \log \left (2-x+\log \left (\frac {5}{2}\right )\right )}{-2+x-\log \left (\frac {5}{2}\right )}\right ) \, dx\\ &=-x+4 \int \frac {\log \left (2-x+\log \left (\frac {5}{2}\right )\right )}{-2+x-\log \left (\frac {5}{2}\right )} \, dx+\int e^x \, dx\\ &=e^x-x-4 \operatorname {Subst}\left (\int \frac {\left (2+\log \left (\frac {5}{2}\right )\right ) \log (x)}{x \left (-2-\log \left (\frac {5}{2}\right )\right )} \, dx,x,2-x+\log \left (\frac {5}{2}\right )\right )\\ &=e^x-x+4 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,2-x+\log \left (\frac {5}{2}\right )\right )\\ &=e^x-x+2 \log ^2\left (2-x+\log \left (\frac {5}{2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.84 \begin {gather*} e^x-x+2 \log ^2\left (2-x+\log \left (\frac {5}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.41, size = 18, normalized size = 0.72 \begin {gather*} 2 \, \log \left (-x + \log \left (\frac {5}{2}\right ) + 2\right )^{2} - x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x - \log \left (\frac {5}{2}\right ) - 2\right )} e^{x} - x + \log \left (\frac {5}{2}\right ) + 4 \, \log \left (-x + \log \left (\frac {5}{2}\right ) + 2\right ) + 2}{x - \log \left (\frac {5}{2}\right ) - 2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 19, normalized size = 0.76
method | result | size |
default | \(-x +2 \ln \left (\ln \left (\frac {5}{2}\right )+2-x \right )^{2}+{\mathrm e}^{x}\) | \(19\) |
norman | \(-x +2 \ln \left (\ln \left (\frac {5}{2}\right )+2-x \right )^{2}+{\mathrm e}^{x}\) | \(19\) |
risch | \(2 \ln \left (-\ln \relax (2)+\ln \relax (5)+2-x \right )^{2}-x +{\mathrm e}^{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {5}{2} \, e^{2} E_{1}\left (-x + \log \left (\frac {5}{2}\right ) + 2\right ) \log \left (\frac {5}{2}\right ) + 5 \, e^{2} E_{1}\left (-x + \log \left (\frac {5}{2}\right ) + 2\right ) + {\left (\log \relax (5) - \log \relax (2) + 2\right )} \int \frac {e^{x}}{x^{2} - 2 \, x {\left (\log \relax (5) - \log \relax (2) + 2\right )} + \log \relax (5)^{2} - 2 \, {\left (\log \relax (5) + 2\right )} \log \relax (2) + \log \relax (2)^{2} + 4 \, \log \relax (5) + 4}\,{d x} - {\left (\log \left (\frac {5}{2}\right ) + 2\right )} \log \left (x - \log \left (\frac {5}{2}\right ) - 2\right ) + \log \left (\frac {5}{2}\right ) \log \left (x - \log \left (\frac {5}{2}\right ) - 2\right ) + 2 \, \log \left (-x + \log \relax (5) - \log \relax (2) + 2\right )^{2} - x + \frac {x e^{x}}{x - \log \relax (5) + \log \relax (2) - 2} + 2 \, \log \left (x - \log \left (\frac {5}{2}\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.23, size = 18, normalized size = 0.72 \begin {gather*} 2\,{\ln \left (\ln \left (\frac {5}{2}\right )-x+2\right )}^2-x+{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 17, normalized size = 0.68 \begin {gather*} - x + e^{x} + 2 \log {\left (- x + \log {\left (\frac {5}{2} \right )} + 2 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________