Optimal. Leaf size=27 \[ \frac {-4 e^{50 x^2}+\left (-\frac {5}{x^2}-x\right )^2+x}{\log (3)} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 46, normalized size of antiderivative = 1.70, number of steps used = 6, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 14, 2209} \begin {gather*} \frac {25}{x^4 \log (3)}+\frac {x^2}{\log (3)}-\frac {4 e^{50 x^2}}{\log (3)}+\frac {x}{\log (3)}+\frac {10}{x \log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-100-10 x^3+x^5+2 x^6-400 e^{50 x^2} x^6}{x^5} \, dx}{\log (3)}\\ &=\frac {\int \left (-400 e^{50 x^2} x+\frac {-100-10 x^3+x^5+2 x^6}{x^5}\right ) \, dx}{\log (3)}\\ &=\frac {\int \frac {-100-10 x^3+x^5+2 x^6}{x^5} \, dx}{\log (3)}-\frac {400 \int e^{50 x^2} x \, dx}{\log (3)}\\ &=-\frac {4 e^{50 x^2}}{\log (3)}+\frac {\int \left (1-\frac {100}{x^5}-\frac {10}{x^2}+2 x\right ) \, dx}{\log (3)}\\ &=-\frac {4 e^{50 x^2}}{\log (3)}+\frac {25}{x^4 \log (3)}+\frac {10}{x \log (3)}+\frac {x}{\log (3)}+\frac {x^2}{\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.07 \begin {gather*} \frac {-4 e^{50 x^2}+\frac {25}{x^4}+\frac {10}{x}+x+x^2}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 32, normalized size = 1.19 \begin {gather*} \frac {x^{6} + x^{5} - 4 \, x^{4} e^{\left (50 \, x^{2}\right )} + 10 \, x^{3} + 25}{x^{4} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 32, normalized size = 1.19 \begin {gather*} \frac {x^{6} + x^{5} - 4 \, x^{4} e^{\left (50 \, x^{2}\right )} + 10 \, x^{3} + 25}{x^{4} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.07
method | result | size |
default | \(\frac {x^{2}+x +\frac {25}{x^{4}}+\frac {10}{x}-4 \,{\mathrm e}^{50 x^{2}}}{\ln \relax (3)}\) | \(29\) |
risch | \(\frac {x^{2}}{\ln \relax (3)}+\frac {x}{\ln \relax (3)}+\frac {10 x^{3}+25}{\ln \relax (3) x^{4}}-\frac {4 \,{\mathrm e}^{50 x^{2}}}{\ln \relax (3)}\) | \(43\) |
norman | \(\frac {\frac {x^{5}}{\ln \relax (3)}+\frac {x^{6}}{\ln \relax (3)}+\frac {25}{\ln \relax (3)}+\frac {10 x^{3}}{\ln \relax (3)}-\frac {4 x^{4} {\mathrm e}^{50 x^{2}}}{\ln \relax (3)}}{x^{4}}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 28, normalized size = 1.04 \begin {gather*} \frac {x^{2} + x + \frac {10}{x} + \frac {25}{x^{4}} - 4 \, e^{\left (50 \, x^{2}\right )}}{\log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 32, normalized size = 1.19 \begin {gather*} \frac {10\,x^3-4\,x^4\,{\mathrm {e}}^{50\,x^2}+x^5+x^6+25}{x^4\,\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 29, normalized size = 1.07 \begin {gather*} \frac {x^{2} + x + \frac {10 x^{3} + 25}{x^{4}}}{\log {\relax (3 )}} - \frac {4 e^{50 x^{2}}}{\log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________