Optimal. Leaf size=21 \[ e^{e^{-5+x+\frac {12}{6+\log (x)-5 (5+\log (x))}}} \]
________________________________________________________________________________________
Rubi [F] time = 14.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\exp \left (\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right ) \left (48+361 x+152 x \log (x)+16 x \log ^2(x)\right )}{361 x+152 x \log (x)+16 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\exp \left (\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right ) \left (48+361 x+152 x \log (x)+16 x \log ^2(x)\right )}{x (19+4 \log (x))^2} \, dx\\ &=\int \left (\exp \left (\exp \left (\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {48 \exp \left (\exp \left (\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )}{x (19+4 \log (x))^2}\right ) \, dx\\ &=48 \int \frac {\exp \left (\exp \left (\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )}{x (19+4 \log (x))^2} \, dx+\int \exp \left (\exp \left (\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right )+\frac {-107+19 x+(-20+4 x) \log (x)}{19+4 \log (x)}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.36, size = 17, normalized size = 0.81 \begin {gather*} e^{e^{-5+x-\frac {12}{19+4 \log (x)}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 74, normalized size = 3.52 \begin {gather*} e^{\left (\frac {{\left (4 \, \log \relax (x) + 19\right )} e^{\left (\frac {4 \, {\left (x - 5\right )} \log \relax (x) + 19 \, x - 107}{4 \, \log \relax (x) + 19}\right )} + 4 \, {\left (x - 5\right )} \log \relax (x) + 19 \, x - 107}{4 \, \log \relax (x) + 19} - \frac {4 \, {\left (x - 5\right )} \log \relax (x) + 19 \, x - 107}{4 \, \log \relax (x) + 19}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (16 \, x \log \relax (x)^{2} + 152 \, x \log \relax (x) + 361 \, x + 48\right )} e^{\left (\frac {4 \, {\left (x - 5\right )} \log \relax (x) + 19 \, x - 107}{4 \, \log \relax (x) + 19} + e^{\left (\frac {4 \, {\left (x - 5\right )} \log \relax (x) + 19 \, x - 107}{4 \, \log \relax (x) + 19}\right )}\right )}}{16 \, x \log \relax (x)^{2} + 152 \, x \log \relax (x) + 361 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 1.24
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {4 x \ln \relax (x )-20 \ln \relax (x )+19 x -107}{4 \ln \relax (x )+19}}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.17, size = 49, normalized size = 2.33 \begin {gather*} e^{\left (e^{\left (\frac {4 \, x \log \relax (x)}{4 \, \log \relax (x) + 19} + \frac {19 \, x}{4 \, \log \relax (x) + 19} - \frac {20 \, \log \relax (x)}{4 \, \log \relax (x) + 19} - \frac {107}{4 \, \log \relax (x) + 19}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 40, normalized size = 1.90 \begin {gather*} {\mathrm {e}}^{x^{\frac {4\,\left (x-5\right )}{4\,\ln \relax (x)+19}}\,{\mathrm {e}}^{\frac {19\,x}{4\,\ln \relax (x)+19}}\,{\mathrm {e}}^{-\frac {107}{4\,\ln \relax (x)+19}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.36, size = 22, normalized size = 1.05 \begin {gather*} e^{e^{\frac {19 x + \left (4 x - 20\right ) \log {\relax (x )} - 107}{4 \log {\relax (x )} + 19}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________