Optimal. Leaf size=19 \[ 61-x \left (-4+\frac {2 \log (2)}{1+x+\log (\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 \log (2)+\left (4+8 x+4 x^2-2 \log (2)\right ) \log (x)+(8+8 x-2 \log (2)) \log (x) \log (\log (x))+4 \log (x) \log ^2(\log (x))}{\left (1+2 x+x^2\right ) \log (x)+(2+2 x) \log (x) \log (\log (x))+\log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (\log (2)+\log (x) \left (2+4 x+2 x^2-\log (2)+(4+4 x-\log (2)) \log (\log (x))+2 \log ^2(\log (x))\right )\right )}{\log (x) (1+x+\log (\log (x)))^2} \, dx\\ &=2 \int \frac {\log (2)+\log (x) \left (2+4 x+2 x^2-\log (2)+(4+4 x-\log (2)) \log (\log (x))+2 \log ^2(\log (x))\right )}{\log (x) (1+x+\log (\log (x)))^2} \, dx\\ &=2 \int \left (2+\frac {\log (2) (1+x \log (x))}{\log (x) (1+x+\log (\log (x)))^2}-\frac {\log (2)}{1+x+\log (\log (x))}\right ) \, dx\\ &=4 x+(2 \log (2)) \int \frac {1+x \log (x)}{\log (x) (1+x+\log (\log (x)))^2} \, dx-(2 \log (2)) \int \frac {1}{1+x+\log (\log (x))} \, dx\\ &=4 x-(2 \log (2)) \int \frac {1}{1+x+\log (\log (x))} \, dx+(2 \log (2)) \int \left (\frac {x}{(1+x+\log (\log (x)))^2}+\frac {1}{\log (x) (1+x+\log (\log (x)))^2}\right ) \, dx\\ &=4 x+(2 \log (2)) \int \frac {x}{(1+x+\log (\log (x)))^2} \, dx+(2 \log (2)) \int \frac {1}{\log (x) (1+x+\log (\log (x)))^2} \, dx-(2 \log (2)) \int \frac {1}{1+x+\log (\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 19, normalized size = 1.00 \begin {gather*} 2 \left (2 x-\frac {x \log (2)}{1+x+\log (\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 30, normalized size = 1.58 \begin {gather*} \frac {2 \, {\left (2 \, x^{2} - x \log \relax (2) + 2 \, x \log \left (\log \relax (x)\right ) + 2 \, x\right )}}{x + \log \left (\log \relax (x)\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 17, normalized size = 0.89 \begin {gather*} 4 \, x - \frac {2 \, x \log \relax (2)}{x + \log \left (\log \relax (x)\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.95
method | result | size |
risch | \(4 x -\frac {2 x \ln \relax (2)}{1+\ln \left (\ln \relax (x )\right )+x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 29, normalized size = 1.53 \begin {gather*} \frac {2 \, {\left (2 \, x^{2} - x {\left (\log \relax (2) - 2\right )} + 2 \, x \log \left (\log \relax (x)\right )\right )}}{x + \log \left (\log \relax (x)\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.43, size = 32, normalized size = 1.68 \begin {gather*} \frac {4\,x+\ln \relax (4)+\ln \left (\ln \relax (x)\right )\,\ln \relax (4)+4\,x\,\ln \left (\ln \relax (x)\right )+4\,x^2}{x+\ln \left (\ln \relax (x)\right )+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 17, normalized size = 0.89 \begin {gather*} 4 x - \frac {2 x \log {\relax (2 )}}{x + \log {\left (\log {\relax (x )} \right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________