Optimal. Leaf size=20 \[ -9+\frac {e^{-4 x}}{2 x (x+\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 26, normalized size of antiderivative = 1.30, number of steps used = 3, number of rules used = 3, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {6688, 12, 2288} \begin {gather*} \frac {e^{-4 x} \left (x^2+x \log (x)\right )}{2 x^2 (x+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-4 x} \left (-1-2 x-4 x^2-\log (x)-4 x \log (x)\right )}{2 x^2 (x+\log (x))^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{-4 x} \left (-1-2 x-4 x^2-\log (x)-4 x \log (x)\right )}{x^2 (x+\log (x))^2} \, dx\\ &=\frac {e^{-4 x} \left (x^2+x \log (x)\right )}{2 x^2 (x+\log (x))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 0.95 \begin {gather*} \frac {e^{-4 x}}{2 \left (x^2+x \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 21, normalized size = 1.05 \begin {gather*} \frac {1}{2 \, {\left (x^{2} e^{\left (4 \, x\right )} + x e^{\left (4 \, x\right )} \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 16, normalized size = 0.80 \begin {gather*} \frac {e^{\left (-4 \, x\right )}}{2 \, {\left (x^{2} + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.80
method | result | size |
risch | \(\frac {{\mathrm e}^{-4 x}}{2 x \left (x +\ln \relax (x )\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 16, normalized size = 0.80 \begin {gather*} \frac {e^{\left (-4 \, x\right )}}{2 \, {\left (x^{2} + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.32, size = 21, normalized size = 1.05 \begin {gather*} \frac {1}{2\,x^2\,{\mathrm {e}}^{4\,x}+2\,x\,{\mathrm {e}}^{4\,x}\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 17, normalized size = 0.85 \begin {gather*} \frac {e^{- 4 x}}{2 x^{2} + 2 x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________