Optimal. Leaf size=28 \[ \frac {4}{9+x}+e^{x^3} \left (3-x-e^{-x} \log (x)\right ) \]
________________________________________________________________________________________
Rubi [C] time = 1.88, antiderivative size = 73, normalized size of antiderivative = 2.61, number of steps used = 10, number of rules used = 9, integrand size = 108, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1594, 27, 6688, 2226, 2208, 2209, 2218, 6706, 2554} \begin {gather*} 3 e^{x^3}-e^{x^3-x} \log (x)+\frac {x \Gamma \left (\frac {1}{3},-x^3\right )}{3 \sqrt [3]{-x^3}}+\frac {x^4 \Gamma \left (\frac {4}{3},-x^3\right )}{\left (-x^3\right )^{4/3}}+\frac {4}{x+9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2208
Rule 2209
Rule 2218
Rule 2226
Rule 2554
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-4 e^x x+e^{x^3} \left (-81-18 x-x^2+e^x \left (-81 x-18 x^2+728 x^3-81 x^4-45 x^5-3 x^6\right )\right )+e^{x^3} \left (81 x+18 x^2-242 x^3-54 x^4-3 x^5\right ) \log (x)\right )}{x \left (81+18 x+x^2\right )} \, dx\\ &=\int \frac {e^{-x} \left (-4 e^x x+e^{x^3} \left (-81-18 x-x^2+e^x \left (-81 x-18 x^2+728 x^3-81 x^4-45 x^5-3 x^6\right )\right )+e^{x^3} \left (81 x+18 x^2-242 x^3-54 x^4-3 x^5\right ) \log (x)\right )}{x (9+x)^2} \, dx\\ &=\int \left (-\frac {e^{-x+x^3}}{x}-\frac {4}{(9+x)^2}+e^{x^3} \left (-1+9 x^2-3 x^3\right )+e^{-x+x^3} \left (1-3 x^2\right ) \log (x)\right ) \, dx\\ &=\frac {4}{9+x}-\int \frac {e^{-x+x^3}}{x} \, dx+\int e^{x^3} \left (-1+9 x^2-3 x^3\right ) \, dx+\int e^{-x+x^3} \left (1-3 x^2\right ) \log (x) \, dx\\ &=\frac {4}{9+x}-e^{-x+x^3} \log (x)+\int \left (-e^{x^3}+9 e^{x^3} x^2-3 e^{x^3} x^3\right ) \, dx\\ &=\frac {4}{9+x}-e^{-x+x^3} \log (x)-3 \int e^{x^3} x^3 \, dx+9 \int e^{x^3} x^2 \, dx-\int e^{x^3} \, dx\\ &=3 e^{x^3}+\frac {4}{9+x}+\frac {x \Gamma \left (\frac {1}{3},-x^3\right )}{3 \sqrt [3]{-x^3}}+\frac {x^4 \Gamma \left (\frac {4}{3},-x^3\right )}{\left (-x^3\right )^{4/3}}-e^{-x+x^3} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 31, normalized size = 1.11 \begin {gather*} -e^{x^3} (-3+x)+\frac {4}{9+x}-e^{-x+x^3} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 41, normalized size = 1.46 \begin {gather*} -\frac {{\left ({\left (x + 9\right )} e^{\left (x^{3}\right )} \log \relax (x) + {\left (x^{2} + 6 \, x - 27\right )} e^{\left (x^{3} + x\right )} - 4 \, e^{x}\right )} e^{\left (-x\right )}}{x + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.74, size = 54, normalized size = 1.93 \begin {gather*} -\frac {x^{2} e^{\left (x^{3}\right )} + x e^{\left (x^{3} - x\right )} \log \relax (x) + 6 \, x e^{\left (x^{3}\right )} + 9 \, e^{\left (x^{3} - x\right )} \log \relax (x) - 27 \, e^{\left (x^{3}\right )} - 4}{x + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 45, normalized size = 1.61
method | result | size |
risch | \(-\ln \relax (x ) {\mathrm e}^{\left (x -1\right ) \left (x +1\right ) x}-\frac {x^{2} {\mathrm e}^{x^{3}}+6 \,{\mathrm e}^{x^{3}} x -27 \,{\mathrm e}^{x^{3}}-4}{x +9}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.87, size = 27, normalized size = 0.96 \begin {gather*} -{\left ({\left (x - 3\right )} e^{x} + \log \relax (x)\right )} e^{\left (x^{3} - x\right )} + \frac {4}{x + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^{x^3}\,\left (18\,x+{\mathrm {e}}^x\,\left (3\,x^6+45\,x^5+81\,x^4-728\,x^3+18\,x^2+81\,x\right )+x^2+81\right )+4\,x\,{\mathrm {e}}^x+{\mathrm {e}}^{x^3}\,\ln \relax (x)\,\left (3\,x^5+54\,x^4+242\,x^3-18\,x^2-81\,x\right )\right )}{x^3+18\,x^2+81\,x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________